Synthesis and Characterization of Platinum-Based Fuel Cell Catalysts

Synthesis and Characterization of Platinum-Based Fuel Cell Catalysts
Title Synthesis and Characterization of Platinum-Based Fuel Cell Catalysts PDF eBook
Author
Publisher
Pages
Release 2004
Genre
ISBN

Download Synthesis and Characterization of Platinum-Based Fuel Cell Catalysts Book in PDF, Epub and Kindle

Synthesis and Characterization of PT-based Fuel Cell Catalysts

Synthesis and Characterization of PT-based Fuel Cell Catalysts
Title Synthesis and Characterization of PT-based Fuel Cell Catalysts PDF eBook
Author Hee Soo Kim
Publisher
Pages 262
Release 2004
Genre
ISBN

Download Synthesis and Characterization of PT-based Fuel Cell Catalysts Book in PDF, Epub and Kindle

Synthesis and Characterization of Platinum Based Catalysts for Fuel Cells

Synthesis and Characterization of Platinum Based Catalysts for Fuel Cells
Title Synthesis and Characterization of Platinum Based Catalysts for Fuel Cells PDF eBook
Author Sonam Patel
Publisher
Pages
Release 2011
Genre
ISBN

Download Synthesis and Characterization of Platinum Based Catalysts for Fuel Cells Book in PDF, Epub and Kindle

Platinum (Pt) and platinum alloys have attracted wide attention as catalysts to attain high performance to increase the power density and reduce the component cost of polymer electrolyte membrane fuel cells (PEMFCs). Extensive research has been conducted in the areas of new alloy development and understanding of mechanisms of electrochemical oxygen reduction reaction (ORR). The durability of PEMFCs is also a major barrier to the commercialization of these fuel cells. Recent studies have suggested that potential cycling can gradually lead to loss of active surface area due to Pt dissolution and nanoparticle grain growth [1]. In this thesis we report a one-step synthesis of highly-dispersed Pt nanoparticles and Pt- Cobalt supported on Ketjen carbon black (20% Pt/C & 20% Pt3Co/C) as electro-catalysts for PEMFCs. Pt particles with size in the range of ~ 2.6nm (Pt/C) and 3.9 nm (Pt3Co/C) were obtained through adsorption on carbon supports and subsequently thermal decomposition of platinum acetylacetonate (Pt(acac)2). A comparative characterization analysis, including X-ray diffraction (XRD), high resolution transmission electron microscope (HR-TEM), FT-iR, EDAX, cyclic voltammetry (CV), and oxygen reduction reaction (ORR) activity, was performed on the synthesized and commercial (46.5wt% TKK) catalysts. The analysis was to reveal the Pt dispersion on the carbon support, particle size and distribution, electrochemical surface area (ECA), and ORR activities of these catalysts. It was found that the synthesized Pt/C showed similar particle size to that of the TKK catalysts (2.6nm and 2.7nm, respectively), but narrower particle size distribution; while the particle size for Pt3Co/C was found to be ~3.9 nm. Accelerated durability tests (ADT) under potential cycles were also performed for Pt/C and TKK to study the electrochemical degradation of the catalysts in corrosive environments. The ADTs revealed that the two catalysts (Pt/C & TKK) were comparable with respect to degradation in ECA and ORR activities. Initial electrochemical evaluation of Pt3Co/C was conducted, but durability studies were not attempted in this thesis due to its worse ORR kinetics than those of the Pt/C catalyst. From the experimental data, it was found that particle size impacted negatively the ECA and ORR activity of the catalysts.

PEM Fuel Cell Electrocatalysts and Catalyst Layers

PEM Fuel Cell Electrocatalysts and Catalyst Layers
Title PEM Fuel Cell Electrocatalysts and Catalyst Layers PDF eBook
Author Jiujun Zhang
Publisher Springer Science & Business Media
Pages 1147
Release 2008-08-26
Genre Technology & Engineering
ISBN 1848009364

Download PEM Fuel Cell Electrocatalysts and Catalyst Layers Book in PDF, Epub and Kindle

Proton exchange membrane (PEM) fuel cells are promising clean energy converting devices with high efficiency and low to zero emissions. Such power sources can be used in transportation, stationary, portable and micro power applications. The key components of these fuel cells are catalysts and catalyst layers. “PEM Fuel Cell Electrocatalysts and Catalyst Layers” provides a comprehensive, in-depth survey of the field, presented by internationally renowned fuel cell scientists. The opening chapters introduce the fundamentals of electrochemical theory and fuel cell catalysis. Later chapters investigate the synthesis, characterization, and activity validation of PEM fuel cell catalysts. Further chapters describe in detail the integration of the electrocatalyst/catalyst layers into the fuel cell, and their performance validation. Researchers and engineers in the fuel cell industry will find this book a valuable resource, as will students of electrochemical engineering and catalyst synthesis.

Synthesis and Characterization of Platinum-based Multi-component Catalysts for Direct Methanol Fuel Cells

Synthesis and Characterization of Platinum-based Multi-component Catalysts for Direct Methanol Fuel Cells
Title Synthesis and Characterization of Platinum-based Multi-component Catalysts for Direct Methanol Fuel Cells PDF eBook
Author Li Ren
Publisher
Pages 154
Release 2007
Genre Fuel cells
ISBN

Download Synthesis and Characterization of Platinum-based Multi-component Catalysts for Direct Methanol Fuel Cells Book in PDF, Epub and Kindle

"In the thesis work, Pt-based binary, ternary, quaternary alloy anode catalysts supported on sonochemically treated multi-walled carbon nanotubes (CNTs) were synthesized with ethylene glycol reduction of corresponding metal chloride salts. Inductively coupled plasma-mass spectroscopy (ICP-MS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM) were used for catalyst characterization. Cyclic voltammetry for methanol oxidation and CO stripping were used to evaluate the performance of the catalysts. PtRu nanoparticles supported on CNTs (PtRu/CNT) were prepared under a series of pHs. It was found that the PtRu particle size, composition, and catalytic activity were all sensitive to the deposition pHs. CO stripping results provided the peak potential and active surface area for each catalyst. The atomic ratios tended to approach the predetermined ratio 1:1 with the increase of pH, which is favored by bi-functional catalytic mechanism. PtRu catalysts prepared at higher pHs presented better electrochemical activity toward methanol oxidation. Humidified oxygen treatment of the PtRu/CNT led to improved activity of the catalysts toward methanol electro-oxidation, implying that Ru hydroxide is better than Ru as a co-catalyst. PtRu, PtOs, PtRuOs, and PtRuOsIr nanoparticles supported on CNTs with atomic ratios of Pt:Ru (tr:46), Pt:Os (80:20), Pt:Ru:Os (54:36:10), and Pt:Ru:Os:Ir (44:36:10:5) were prepared. Cyclic voltammetry for the methanol oxidation and CO stripping at the catalysts showed that PtRu/CNT and PtRuOsIr/CNT have the best performance toward methanol oxidation, PtRuOs/CNT has the lowest activity, but PtOs/CNT exhibits better catalytic activity only at potential or 0.73 V"--Abstract, leaf iii.

Nanostructured Catalyst Systems for Fuel Cells

Nanostructured Catalyst Systems for Fuel Cells
Title Nanostructured Catalyst Systems for Fuel Cells PDF eBook
Author
Publisher
Pages
Release 2007
Genre
ISBN

Download Nanostructured Catalyst Systems for Fuel Cells Book in PDF, Epub and Kindle

The objective of this project is to synthesize and characterize new O2 reduction catalysts with enhanced activity and ultra low Pt loading, and to test them in membrane electrode assemblies (MEAs) to determine their performance under fuel cell cathode operating conditions.

Synthesis and Characterization of Non-PGM Catalysts for Fuel Cell Applications

Synthesis and Characterization of Non-PGM Catalysts for Fuel Cell Applications
Title Synthesis and Characterization of Non-PGM Catalysts for Fuel Cell Applications PDF eBook
Author Sudharsan Sridhar
Publisher
Pages 0
Release 2020
Genre Carbon compounds
ISBN

Download Synthesis and Characterization of Non-PGM Catalysts for Fuel Cell Applications Book in PDF, Epub and Kindle

Fuel Cells convert the chemical energy of a fuel and an oxidizing agent into electricity through a pair of redox reactions. Proton Exchange Membrane (PEM) fuel cells convert (efficiency-60%) hydrogen and air to power the electric motors with zero emissions, facilitating the development of environmentally friendly and sustainable automobile technologies. One of the major obstacles for larger commercial viability of Fuel Cells for automobile applications is their cost-effectiveness. Currently, fuel cells use platinum as a catalyst material, which is prohibitively expensive for commercial automobile applications. The development of non-Platinum Group Metal (non-PGM) catalyst materials with similar electrochemical performance to that of Platinum is essential for adopting fuel cells in automobile technologies in a big way. Hence, this research focused on the synthesis and characterization of three different non-PGM catalyst materials based on graphene and graphene oxide with nitrogen and Zeolite Imidazole Frameworks (ZIF) and an additional transition metal (Fe) loading. Various characterization techniques were performed to analyze the chemical, morphological, and electrochemical properties of each of these synthesized materials. The synthesized catalyst materials are N-GR-ZIF, N-RGO-ZIF, and N-RGO-Fe-ZIF with varying nitrogen doping. N-RGO-Fe-ZIF exhibited electrochemical characteristics that are quite comparable to that of Pt-based catalysts. The details of the synthesis process and characterization of the synthesized materials are discussed in this dissertation.