Symmetric Functions and Combinatorial Operators on Polynomials
Title | Symmetric Functions and Combinatorial Operators on Polynomials PDF eBook |
Author | Alain Lascoux |
Publisher | American Mathematical Soc. |
Pages | 282 |
Release | 2003 |
Genre | Mathematics |
ISBN | 0821828711 |
The theory of symmetric functions is an old topic in mathematics, which is used as an algebraic tool in many classical fields. With $\lambda$-rings, one can regard symmetric functions as operators on polynomials and reduce the theory to just a handful of fundamental formulas. One of the main goals of the book is to describe the technique of $\lambda$-rings. The main applications of this technique to the theory of symmetric functions are related to the Euclid algorithm and its occurrence in division, continued fractions, Pade approximants, and orthogonal polynomials. Putting the emphasis on the symmetric group instead of symmetric functions, one can extend the theory to non-symmetric polynomials, with Schur functions being replaced by Schubert polynomials. In two independent chapters, the author describes the main properties of these polynomials, following either the approach of Newton and interpolation methods, or the method of Cauchy and the diagonalization of a kernel generalizing the resultant. The last chapter sketches a non-commutative version of symmetric functions, with the help of Young tableaux and the plactic monoid. The book also contains numerous exercises clarifying and extending many points of the main text.
Current Trends in Symmetric Polynomials with Their Applications Ⅱ
Title | Current Trends in Symmetric Polynomials with Their Applications Ⅱ PDF eBook |
Author | Taekyun Kim |
Publisher | MDPI |
Pages | 206 |
Release | 2021-03-19 |
Genre | Mathematics |
ISBN | 3036503609 |
The special issue contains research papers with various topics in many different branches of mathematics, applied mathematics, and mathematical physics. Each paper presents mathematical theory, methods, and their application based on current and recent developing symmetric polynomials. Also, each one aims to provide the full understanding of current research problems, theories, and applications on the chosen topics and contains the most recent advances made in the area of symmetric functions and polynomials.
Symmetric Functions and Hall Polynomials
Title | Symmetric Functions and Hall Polynomials PDF eBook |
Author | Ian Grant Macdonald |
Publisher | Oxford University Press |
Pages | 496 |
Release | 1998 |
Genre | Mathematics |
ISBN | 9780198504504 |
This reissued classic text is the acclaimed second edition of Professor Ian Macdonald's groundbreaking monograph on symmetric functions and Hall polynomials. The first edition was published in 1979, before being significantly expanded into the present edition in 1995. This text is widely regarded as the best source of information on Hall polynomials and what have come to be known as Macdonald polynomials, central to a number of key developments in mathematics and mathematical physics in the 21st century Macdonald polynomials gave rise to the subject of double affine Hecke algebras (or Cherednik algebras) important in representation theory. String theorists use Macdonald polynomials to attack the so-called AGT conjectures. Macdonald polynomials have been recently used to construct knot invariants. They are also a central tool for a theory of integrable stochastic models that have found a number of applications in probability, such as random matrices, directed polymers in random media, driven lattice gases, and so on. Macdonald polynomials have become a part of basic material that a researcher simply must know if (s)he wants to work in one of the above domains, ensuring this new edition will appeal to a very broad mathematical audience. Featuring a new foreword by Professor Richard Stanley of MIT.
The $q,t$-Catalan Numbers and the Space of Diagonal Harmonics
Title | The $q,t$-Catalan Numbers and the Space of Diagonal Harmonics PDF eBook |
Author | James Haglund |
Publisher | American Mathematical Soc. |
Pages | 178 |
Release | 2008 |
Genre | Mathematics |
ISBN | 0821844113 |
This work contains detailed descriptions of developments in the combinatorics of the space of diagonal harmonics, a topic at the forefront of current research in algebraic combinatorics. These developments have led in turn to some surprising discoveries in the combinatorics of Macdonald polynomials.
Unitary Symmetry and Combinatorics
Title | Unitary Symmetry and Combinatorics PDF eBook |
Author | James D. Louck |
Publisher | World Scientific |
Pages | 642 |
Release | 2008 |
Genre | Science |
ISBN | 9812814728 |
Notation -- Quantum angular momentum -- Composite systems -- Graphs and adjacency diagrams -- Generating functions -- The D[lambda] polynomials: form -- Operator actions in Hilbert space -- The D[lambda] polynomials: structure -- The general linear and unitary groups -- Tensor operator theory -- Compendium A. Basic algebraic objects -- Compendium B. Combinatorial objects.
Special Functions
Title | Special Functions PDF eBook |
Author | George E. Andrews |
Publisher | Cambridge University Press |
Pages | 684 |
Release | 1999 |
Genre | Mathematics |
ISBN | 9780521789882 |
An overview of special functions, focusing on the hypergeometric functions and the associated hypergeometric series.
Affine Hecke Algebras and Orthogonal Polynomials
Title | Affine Hecke Algebras and Orthogonal Polynomials PDF eBook |
Author | I. G. Macdonald |
Publisher | Cambridge University Press |
Pages | 200 |
Release | 2003-03-20 |
Genre | Mathematics |
ISBN | 9780521824729 |
First account of a theory, created by Macdonald, of a class of orthogonal polynomial, which is related to mathematical physics.