Extreme States of Matter in Strong Interaction Physics
Title | Extreme States of Matter in Strong Interaction Physics PDF eBook |
Author | Helmut Satz |
Publisher | Springer Science & Business Media |
Pages | 245 |
Release | 2012-03-17 |
Genre | Science |
ISBN | 3642239072 |
The thermodynamics of strongly interacting matter has become a profound and challenging area of modern physics, both in theory and in experiment. Statistical quantum chromodynamics, through analytical as well as numerical studies, provides the main theoretical tool, while in experiment, high-energy nuclear collisions are the key for extensive laboratory investigations. The field therefore straddles statistical, particle and nuclear physics, both conceptually and in the methods of investigation used. This course-tested primer addresses above all the many young scientists starting their scientific research in this field, providing them with a general, self-contained introduction that emphasizes in particular the basic concepts and ideas, with the aim of explaining why we do what we do. To achieve this goal, the present text concentrates mainly on equilibrium thermodynamics: first, the fundamental ideas of strong interaction thermodynamics are introduced and then the main concepts and methods used in the study of the physics of complex systems are summarized. Subsequently, simplified phenomenological pictures, leading to critical behavior in hadronic matter and to hadron-quark phase transitions are introduced, followed by elements of finite-temperature lattice QCD leading to the important results obtained in computer simulation studies of the lattice approach. Next, the relation of the resulting critical behavior to symmetry breaking/restoration in QCD is clarified before the text turns to the study of the QCD phase diagram. The presentation of bulk equilibrium thermodynamics is completed by studying the properties of the quark-gluon plasma as new state of strongly interacting matter. The final chapters of the book are devoted to more specific topics which arise when nuclear collisions are considered as a tool for the experimental study of QCD thermodynamics.
Strongly Interacting Matter under Rotation
Title | Strongly Interacting Matter under Rotation PDF eBook |
Author | Francesco Becattini |
Publisher | Springer Nature |
Pages | 400 |
Release | 2021-07-19 |
Genre | Science |
ISBN | 3030714276 |
This book addresses the needs of growing community of graduate students and researchers new to the area, for a survey that covers a wide range of pertinent topics, summarizes the current status of the field, and provides the necessary pedagogical materials for newcomers. The investigation of strongly interacting matter under the influence of macroscopic rotational motion is a new, emerging area of research that encompasses a broad range of conventional physics disciplines such as nuclear physics, astrophysics, and condensed matter physics, where the non-trivial interplay between global rotation and spin is generating many novel phenomena. Edited and authored by leading researchers in the field, this book covers the following topics: thermodynamics and equilibrium distribution of rotating matter; quantum field theory and rotation; phase structure of QCD matter under rotation; kinetic theory of relativistic rotating matter; hydrodynamics with spin; magnetic effects in fluid systems with high vorticity and charge; polarization measurements in heavy ion collisions; hydrodynamic modeling of the QCD plasma and polarization calculation in relativistic heavy ion collisions; chiral vortical effect; rotational effects and related topics in neutron stars and condensed matter systems.
Foundations of High-Energy-Density Physics
Title | Foundations of High-Energy-Density Physics PDF eBook |
Author | Jon Larsen |
Publisher | Cambridge University Press |
Pages | 759 |
Release | 2017-03-10 |
Genre | Science |
ISBN | 1107124115 |
A valuable and complete resource that brings together many of the branches of physics needed in high-energy-density physics. Targeted at research scientists and graduate students in physics and astrophysics, this book begins with basic concepts and develops a detailed explanation of the physics of hydrodynamics and energy transport in plasma.
Phase Structure of Strongly Interacting Matter
Title | Phase Structure of Strongly Interacting Matter PDF eBook |
Author | Jean Cleymans |
Publisher | Springer Science & Business Media |
Pages | 377 |
Release | 2012-12-06 |
Genre | Science |
ISBN | 3642878210 |
The 6th Advanced Course in Theoretical Physics was held at the University of Cape Town, January 8-19, 1990. The topic of the course was "Phase Structure of Strongly Interacting Matter". There were ten invited speakers from overseas, each having up to six hours in which to present his field of research to a relatively small audience of about 50 participants. This allowed for the presentation of a broad, coherent and pedagogical review of the present status of the field. In addition there were several one-hour presentations by local participants. The main emphasis of the course was on the study of the properties of high density hot nuclear matter. This field is of particular interest because of the belief that a deconfined quark-gluon plasma could be created in such an environment when the temperature reaches about 200MeV. In the nuclear regime a so-called "liquid-to-gas" phase transition is expected at a temperature of approximately 10- 20MeV. Both of these topics received ample attention at the school. Owing the nature of the field, there exists much overlapping interest from both the nuclear physics and high-energy particle physics communities. It is hoped that these proceedings will contribute to building a bridge between the two groups.
Extreme States of Matter in Strong Interaction Physics
Title | Extreme States of Matter in Strong Interaction Physics PDF eBook |
Author | Helmut Satz |
Publisher | Springer |
Pages | 296 |
Release | 2018-02-26 |
Genre | Science |
ISBN | 3319718940 |
This book is a course-tested primer on the thermodynamics of strongly interacting matter – a profound and challenging area of both theoretical and experimental modern physics. Analytical and numerical studies of statistical quantum chromodynamics provide the main theoretical tool, while in experiments, high-energy nuclear collisions are the key for extensive laboratory investigations. As such, the field straddles statistical, particle and nuclear physics, both conceptually and in the methods of investigation used. The book addresses, above all, the many young scientists starting their scientific research in this field, providing them with a general, self-contained introduction that highlights the basic concepts and ideas and explains why we do what we do. Much of the book focuses on equilibrium thermodynamics: first it presents simplified phenomenological pictures, leading to critical behavior in hadronic matter and to a quark-hadron phase transition. This is followed by elements of finite temperature lattice QCD and an exposition of the important results obtained through the computer simulation of the lattice formulation. It goes on to clarify the relationship between the resulting critical behavior due to symmetry breaking/restoration in QCD, before turning to the QCD phase diagram. The presentation of bulk equilibrium thermodyamics is completed by studying the properties of the quark-gluon plasma as a new state of strongly interacting matter. The final chapters of the book are devoted to more specific topics that arise when nuclear collisions are considered as a tool for the experimental study of QCD thermodynamics. This second edition includes a new chapter on the hydrodynamic evolution of the medium produced in nuclear collisions. Since the study of flow for strongly interacting fluids has gained ever-increasing importance over the years, it is dealt with it in some detail, including comments on gauge/gravity duality. Moreover, other aspects of experimental studies are brought up to date, such as the search for critical behavior in multihadron production, the calibration of quarkonium production in nuclear collisions, and the relation between strangeness suppression and deconfinement.
Plasma Science
Title | Plasma Science PDF eBook |
Author | National Academies of Sciences Engineering and Medicine |
Publisher | |
Pages | 291 |
Release | 2021-02-28 |
Genre | |
ISBN | 9780309677608 |
Plasma Science and Engineering transforms fundamental scientific research into powerful societal applications, from materials processing and healthcare to forecasting space weather. Plasma Science: Enabling Technology, Sustainability, Security and Exploration discusses the importance of plasma research, identifies important grand challenges for the next decade, and makes recommendations on funding and workforce. This publication will help federal agencies, policymakers, and academic leadership understand the importance of plasma research and make informed decisions about plasma science funding, workforce, and research directions.
QCD Perspectives on Hot and Dense Matter
Title | QCD Perspectives on Hot and Dense Matter PDF eBook |
Author | Jean-Paul Blaizot |
Publisher | Springer Science & Business Media |
Pages | 540 |
Release | 2002-11-30 |
Genre | Science |
ISBN | 9781402010361 |
Many facets of quantum chromodynamics (QCD) are relevant to the in-depth discussion of theoretical and experimental aspects of high-energy nucleus-nucleus collisions. Exciting phenomena are being discovered in such ultrarelativistic heavy ion collisions, notably the increasingly important role of deconfined quark-gluon matter created in the early stage. The book contains lectures on the physics of hot dense matter, the expected phase transitions and colour superconductivity, recent developments in the treatment of nonlinear effects at large parton densities, fundamental issues in the phenomenology of ultrarelativistic heavy collisions. The latest data on heavy ion collisions are also presented. A unique collection of lectures on the many facets of QCD relevant to the physics of hot dense matter.