Stochastic Processes for Physicists

Stochastic Processes for Physicists
Title Stochastic Processes for Physicists PDF eBook
Author Kurt Jacobs
Publisher Cambridge University Press
Pages 203
Release 2010-02-18
Genre Science
ISBN 1139486799

Download Stochastic Processes for Physicists Book in PDF, Epub and Kindle

Stochastic processes are an essential part of numerous branches of physics, as well as in biology, chemistry, and finance. This textbook provides a solid understanding of stochastic processes and stochastic calculus in physics, without the need for measure theory. In avoiding measure theory, this textbook gives readers the tools necessary to use stochastic methods in research with a minimum of mathematical background. Coverage of the more exotic Levy processes is included, as is a concise account of numerical methods for simulating stochastic systems driven by Gaussian noise. The book concludes with a non-technical introduction to the concepts and jargon of measure-theoretic probability theory. With over 70 exercises, this textbook is an easily accessible introduction to stochastic processes and their applications, as well as methods for numerical simulation, for graduate students and researchers in physics.

Theory and Applications of Stochastic Processes

Theory and Applications of Stochastic Processes
Title Theory and Applications of Stochastic Processes PDF eBook
Author Zeev Schuss
Publisher Springer Science & Business Media
Pages 486
Release 2009-12-09
Genre Mathematics
ISBN 1441916059

Download Theory and Applications of Stochastic Processes Book in PDF, Epub and Kindle

Stochastic processes and diffusion theory are the mathematical underpinnings of many scientific disciplines, including statistical physics, physical chemistry, molecular biophysics, communications theory and many more. Many books, reviews and research articles have been published on this topic, from the purely mathematical to the most practical. This book offers an analytical approach to stochastic processes that are most common in the physical and life sciences, as well as in optimal control and in the theory of filltering of signals from noisy measurements. Its aim is to make probability theory in function space readily accessible to scientists trained in the traditional methods of applied mathematics, such as integral, ordinary, and partial differential equations and asymptotic methods, rather than in probability and measure theory.

Stochastic Methods in Fluid Mechanics

Stochastic Methods in Fluid Mechanics
Title Stochastic Methods in Fluid Mechanics PDF eBook
Author Sergio Chibbaro
Publisher Springer Science & Business Media
Pages 175
Release 2013-09-05
Genre Technology & Engineering
ISBN 3709116228

Download Stochastic Methods in Fluid Mechanics Book in PDF, Epub and Kindle

Since their first introduction in natural sciences through the work of Einstein on Brownian motion in 1905 and further works, in particular by Langevin, Smoluchowski and others, stochastic processes have been used in several areas of science and technology. For example, they have been applied in chemical studies, or in fluid turbulence and for combustion and reactive flows. The articles in this book provide a general and unified framework in which stochastic processes are presented as modeling tools for various issues in engineering, physics and chemistry, with particular focus on fluid mechanics and notably dispersed two-phase flows. The aim is to develop what can referred to as stochastic modeling for a whole range of applications.

Stochastic Numerics for Mathematical Physics

Stochastic Numerics for Mathematical Physics
Title Stochastic Numerics for Mathematical Physics PDF eBook
Author Grigori N. Milstein
Publisher Springer Nature
Pages 754
Release 2021-12-03
Genre Computers
ISBN 3030820408

Download Stochastic Numerics for Mathematical Physics Book in PDF, Epub and Kindle

This book is a substantially revised and expanded edition reflecting major developments in stochastic numerics since the first edition was published in 2004. The new topics, in particular, include mean-square and weak approximations in the case of nonglobally Lipschitz coefficients of Stochastic Differential Equations (SDEs) including the concept of rejecting trajectories; conditional probabilistic representations and their application to practical variance reduction using regression methods; multi-level Monte Carlo method; computing ergodic limits and additional classes of geometric integrators used in molecular dynamics; numerical methods for FBSDEs; approximation of parabolic SPDEs and nonlinear filtering problem based on the method of characteristics. SDEs have many applications in the natural sciences and in finance. Besides, the employment of probabilistic representations together with the Monte Carlo technique allows us to reduce the solution of multi-dimensional problems for partial differential equations to the integration of stochastic equations. This approach leads to powerful computational mathematics that is presented in the treatise. Many special schemes for SDEs are presented. In the second part of the book numerical methods for solving complicated problems for partial differential equations occurring in practical applications, both linear and nonlinear, are constructed. All the methods are presented with proofs and hence founded on rigorous reasoning, thus giving the book textbook potential. An overwhelming majority of the methods are accompanied by the corresponding numerical algorithms which are ready for implementation in practice. The book addresses researchers and graduate students in numerical analysis, applied probability, physics, chemistry, and engineering as well as mathematical biology and financial mathematics.

Stochastic Processes and Applications

Stochastic Processes and Applications
Title Stochastic Processes and Applications PDF eBook
Author Grigorios A. Pavliotis
Publisher Springer
Pages 345
Release 2014-11-19
Genre Mathematics
ISBN 1493913239

Download Stochastic Processes and Applications Book in PDF, Epub and Kindle

This book presents various results and techniques from the theory of stochastic processes that are useful in the study of stochastic problems in the natural sciences. The main focus is analytical methods, although numerical methods and statistical inference methodologies for studying diffusion processes are also presented. The goal is the development of techniques that are applicable to a wide variety of stochastic models that appear in physics, chemistry and other natural sciences. Applications such as stochastic resonance, Brownian motion in periodic potentials and Brownian motors are studied and the connection between diffusion processes and time-dependent statistical mechanics is elucidated. The book contains a large number of illustrations, examples, and exercises. It will be useful for graduate-level courses on stochastic processes for students in applied mathematics, physics and engineering. Many of the topics covered in this book (reversible diffusions, convergence to equilibrium for diffusion processes, inference methods for stochastic differential equations, derivation of the generalized Langevin equation, exit time problems) cannot be easily found in textbook form and will be useful to both researchers and students interested in the applications of stochastic processes.

Stochastic Processes and Filtering Theory

Stochastic Processes and Filtering Theory
Title Stochastic Processes and Filtering Theory PDF eBook
Author Andrew H. Jazwinski
Publisher Courier Corporation
Pages 404
Release 2013-04-15
Genre Science
ISBN 0486318192

Download Stochastic Processes and Filtering Theory Book in PDF, Epub and Kindle

This unified treatment of linear and nonlinear filtering theory presents material previously available only in journals, and in terms accessible to engineering students. Its sole prerequisites are advanced calculus, the theory of ordinary differential equations, and matrix analysis. Although theory is emphasized, the text discusses numerous practical applications as well. Taking the state-space approach to filtering, this text models dynamical systems by finite-dimensional Markov processes, outputs of stochastic difference, and differential equations. Starting with background material on probability theory and stochastic processes, the author introduces and defines the problems of filtering, prediction, and smoothing. He presents the mathematical solutions to nonlinear filtering problems, and he specializes the nonlinear theory to linear problems. The final chapters deal with applications, addressing the development of approximate nonlinear filters, and presenting a critical analysis of their performance.

Stochastic Processes in Mathematical Physics and Engineering

Stochastic Processes in Mathematical Physics and Engineering
Title Stochastic Processes in Mathematical Physics and Engineering PDF eBook
Author American Mathematical Society
Publisher American Mathematical Soc.
Pages 328
Release 1964
Genre Mathematics
ISBN 0821813161

Download Stochastic Processes in Mathematical Physics and Engineering Book in PDF, Epub and Kindle