Standard Monomial Theory

Standard Monomial Theory
Title Standard Monomial Theory PDF eBook
Author V. Lakshmibai
Publisher Springer Science & Business Media
Pages 271
Release 2007-12-23
Genre Mathematics
ISBN 3540767576

Download Standard Monomial Theory Book in PDF, Epub and Kindle

Schubert varieties provide an inductive tool for studying flag varieties. This book is mainly a detailed account of a particularly interesting instance of their occurrence: namely, in relation to classical invariant theory. More precisely, it is about the connection between the first and second fundamental theorems of classical invariant theory on the one hand and standard monomial theory for Schubert varieties in certain special flag varieties on the other.

Flag Varieties

Flag Varieties
Title Flag Varieties PDF eBook
Author V Lakshmibai
Publisher Springer
Pages 315
Release 2018-06-26
Genre Mathematics
ISBN 9811313938

Download Flag Varieties Book in PDF, Epub and Kindle

This book discusses the importance of flag varieties in geometric objects and elucidates its richness as interplay of geometry, combinatorics and representation theory. The book presents a discussion on the representation theory of complex semisimple Lie algebras, as well as the representation theory of semisimple algebraic groups. In addition, the book also discusses the representation theory of symmetric groups. In the area of algebraic geometry, the book gives a detailed account of the Grassmannian varieties, flag varieties, and their Schubert subvarieties. Many of the geometric results admit elegant combinatorial description because of the root system connections, a typical example being the description of the singular locus of a Schubert variety. This discussion is carried out as a consequence of standard monomial theory. Consequently, this book includes standard monomial theory and some important applications—singular loci of Schubert varieties, toric degenerations of Schubert varieties, and the relationship between Schubert varieties and classical invariant theory. The two recent results on Schubert varieties in the Grassmannian have also been included in this book. The first result gives a free resolution of certain Schubert singularities. The second result is about certain Levi subgroup actions on Schubert varieties in the Grassmannian and derives some interesting geometric and representation-theoretic consequences.

Introduction to the Theory of Standard Monomials

Introduction to the Theory of Standard Monomials
Title Introduction to the Theory of Standard Monomials PDF eBook
Author C. S. Seshadri
Publisher Springer
Pages 229
Release 2016-08-22
Genre Mathematics
ISBN 9811018138

Download Introduction to the Theory of Standard Monomials Book in PDF, Epub and Kindle

The book is a reproduction of a course of lectures delivered by the author in 1983-84 which appeared in the Brandeis Lecture Notes series. The aim of this course was to give an introduction to the series of papers by concentrating on the case of the full linear group. In recent years, there has been great progress in standard monomial theory due to the work of Peter Littelmann. The author’s lectures (reproduced in this book) remain an excellent introduction to standard monomial theory. Standard monomial theory deals with the construction of nice bases of finite dimensional irreducible representations of semi-simple algebraic groups or, in geometric terms, nice bases of coordinate rings of flag varieties (and their Schubert subvarieties) associated with these groups. Besides its intrinsic interest, standard monomial theory has applications to the study of the geometry of Schubert varieties. Standard monomial theory has its origin in the work of Hodge, giving bases of the coordinate rings of the Grassmannian and its Schubert subvarieties by “standard monomials”. In its modern form, standard monomial theory was developed by the author in a series of papers written in collaboration with V. Lakshmibai and C. Musili. In the second edition of the book, conjectures of a standard monomial theory for a general semi-simple (simply-connected) algebraic group, due to Lakshmibai, have been added as an appendix, and the bibliography has been revised.

Symmetry: Representation Theory and Its Applications

Symmetry: Representation Theory and Its Applications
Title Symmetry: Representation Theory and Its Applications PDF eBook
Author Roger Howe
Publisher Springer
Pages 562
Release 2015-01-04
Genre Mathematics
ISBN 1493915908

Download Symmetry: Representation Theory and Its Applications Book in PDF, Epub and Kindle

Nolan Wallach's mathematical research is remarkable in both its breadth and depth. His contributions to many fields include representation theory, harmonic analysis, algebraic geometry, combinatorics, number theory, differential equations, Riemannian geometry, ring theory, and quantum information theory. The touchstone and unifying thread running through all his work is the idea of symmetry. This volume is a collection of invited articles that pay tribute to Wallach's ideas, and show symmetry at work in a large variety of areas. The articles, predominantly expository, are written by distinguished mathematicians and contain sufficient preliminary material to reach the widest possible audiences. Graduate students, mathematicians, and physicists interested in representation theory and its applications will find many gems in this volume that have not appeared in print elsewhere. Contributors: D. Barbasch, K. Baur, O. Bucicovschi, B. Casselman, D. Ciubotaru, M. Colarusso, P. Delorme, T. Enright, W.T. Gan, A Garsia, G. Gour, B. Gross, J. Haglund, G. Han, P. Harris, J. Hong, R. Howe, M. Hunziker, B. Kostant, H. Kraft, D. Meyer, R. Miatello, L. Ni, G. Schwarz, L. Small, D. Vogan, N. Wallach, J. Wolf, G. Xin, O. Yacobi.

Representation Theories and Algebraic Geometry

Representation Theories and Algebraic Geometry
Title Representation Theories and Algebraic Geometry PDF eBook
Author A. Broer
Publisher Springer Science & Business Media
Pages 455
Release 2013-03-09
Genre Mathematics
ISBN 9401591318

Download Representation Theories and Algebraic Geometry Book in PDF, Epub and Kindle

The 12 lectures presented in Representation Theories and Algebraic Geometry focus on the very rich and powerful interplay between algebraic geometry and the representation theories of various modern mathematical structures, such as reductive groups, quantum groups, Hecke algebras, restricted Lie algebras, and their companions. This interplay has been extensively exploited during recent years, resulting in great progress in these representation theories. Conversely, a great stimulus has been given to the development of such geometric theories as D-modules, perverse sheafs and equivariant intersection cohomology. The range of topics covered is wide, from equivariant Chow groups, decomposition classes and Schubert varieties, multiplicity free actions, convolution algebras, standard monomial theory, and canonical bases, to annihilators of quantum Verma modules, modular representation theory of Lie algebras and combinatorics of representation categories of Harish-Chandra modules.

Kac-Moody Groups, their Flag Varieties and Representation Theory

Kac-Moody Groups, their Flag Varieties and Representation Theory
Title Kac-Moody Groups, their Flag Varieties and Representation Theory PDF eBook
Author Shrawan Kumar
Publisher Springer Science & Business Media
Pages 630
Release 2002-09-10
Genre Mathematics
ISBN 9780817642273

Download Kac-Moody Groups, their Flag Varieties and Representation Theory Book in PDF, Epub and Kindle

"Most of these topics appear here for the first time in book form. Many of them are interesting even in the classical case of semi-simple algebraic groups. Some appendices recall useful results from other areas, so the work may be considered self-contained, although some familiarity with semi-simple Lie algebras or algebraic groups is helpful. It is clear that this book is a valuable reference for all those interested in flag varieties and representation theory in the semi-simple or Kac-Moody case." —MATHEMATICAL REVIEWS "A lot of different topics are treated in this monumental work. . . . many of the topics of the book will be useful for those only interested in the finite-dimensional case. The book is self contained, but is on the level of advanced graduate students. . . . For the motivated reader who is willing to spend considerable time on the material, the book can be a gold mine. " —ZENTRALBLATT MATH

Combinatorial Commutative Algebra

Combinatorial Commutative Algebra
Title Combinatorial Commutative Algebra PDF eBook
Author Ezra Miller
Publisher Springer Science & Business Media
Pages 442
Release 2005-06-21
Genre Mathematics
ISBN 9780387237077

Download Combinatorial Commutative Algebra Book in PDF, Epub and Kindle

Recent developments are covered Contains over 100 figures and 250 exercises Includes complete proofs