Spinors on Singular Spaces and the Topology of Causal Fermion Systems

Spinors on Singular Spaces and the Topology of Causal Fermion Systems
Title Spinors on Singular Spaces and the Topology of Causal Fermion Systems PDF eBook
Author Felix Finster
Publisher American Mathematical Soc.
Pages 96
Release 2019-06-10
Genre Mathematics
ISBN 1470436213

Download Spinors on Singular Spaces and the Topology of Causal Fermion Systems Book in PDF, Epub and Kindle

Causal fermion systems and Riemannian fermion systems are proposed as a framework for describing non-smooth geometries. In particular, this framework provides a setting for spinors on singular spaces. The underlying topological structures are introduced and analyzed. The connection to the spin condition in differential topology is worked out. The constructions are illustrated by many simple examples such as the Euclidean plane, the two-dimensional Minkowski space, a conical singularity, a lattice system as well as the curvature singularity of the Schwarzschild space-time. As further examples, it is shown how complex and Kähler structures can be encoded in Riemannian fermion systems.

Geometric Optics for Surface Waves in Nonlinear Elasticity

Geometric Optics for Surface Waves in Nonlinear Elasticity
Title Geometric Optics for Surface Waves in Nonlinear Elasticity PDF eBook
Author Jean-François Coulombel
Publisher American Mathematical Soc.
Pages 164
Release 2020-04-03
Genre Education
ISBN 1470440377

Download Geometric Optics for Surface Waves in Nonlinear Elasticity Book in PDF, Epub and Kindle

This work is devoted to the analysis of high frequency solutions to the equations of nonlinear elasticity in a half-space. The authors consider surface waves (or more precisely, Rayleigh waves) arising in the general class of isotropic hyperelastic models, which includes in particular the Saint Venant-Kirchhoff system. Work has been done by a number of authors since the 1980s on the formulation and well-posedness of a nonlinear evolution equation whose (exact) solution gives the leading term of an approximate Rayleigh wave solution to the underlying elasticity equations. This evolution equation, which is referred to as “the amplitude equation”, is an integrodifferential equation of nonlocal Burgers type. The authors begin by reviewing and providing some extensions of the theory of the amplitude equation. The remainder of the paper is devoted to a rigorous proof in 2D that exact, highly oscillatory, Rayleigh wave solutions uε to the nonlinear elasticity equations exist on a fixed time interval independent of the wavelength ε, and that the approximate Rayleigh wave solution provided by the analysis of the amplitude equation is indeed close in a precise sense to uε on a time interval independent of ε. This paper focuses mainly on the case of Rayleigh waves that are pulses, which have profiles with continuous Fourier spectrum, but the authors' method applies equally well to the case of wavetrains, whose Fourier spectrum is discrete.

Rigid Character Groups, Lubin-Tate Theory, and (φ,Γ)-Modules

Rigid Character Groups, Lubin-Tate Theory, and (φ,Γ)-Modules
Title Rigid Character Groups, Lubin-Tate Theory, and (φ,Γ)-Modules PDF eBook
Author Laurent Berger
Publisher American Mathematical Soc.
Pages 92
Release 2020-04-03
Genre Education
ISBN 1470440733

Download Rigid Character Groups, Lubin-Tate Theory, and (φ,Γ)-Modules Book in PDF, Epub and Kindle

The construction of the p-adic local Langlands correspondence for GL2(Qp) uses in an essential way Fontaine's theory of cyclotomic (φ,Γ)-modules. Here cyclotomic means that Γ=Gal(Qp(μp∞)/Qp) is the Galois group of the cyclotomic extension of Qp. In order to generalize the p-adic local Langlands correspondence to GL2(L), where L is a finite extension of Qp, it seems necessary to have at our disposal a theory of Lubin-Tate (φ,Γ)-modules. Such a generalization has been carried out, to some extent, by working over the p-adic open unit disk, endowed with the action of the endomorphisms of a Lubin-Tate group. The main idea of this article is to carry out a Lubin-Tate generalization of the theory of cyclotomic (φ,Γ)-modules in a different fashion. Instead of the p-adic open unit disk, the authors work over a character variety that parameterizes the locally L-analytic characters on oL. They study (φ,Γ)-modules in this setting and relate some of them to what was known previously.

Propagating Terraces and the Dynamics of Front-Like Solutions of Reaction-Diffusion Equations on R

Propagating Terraces and the Dynamics of Front-Like Solutions of Reaction-Diffusion Equations on R
Title Propagating Terraces and the Dynamics of Front-Like Solutions of Reaction-Diffusion Equations on R PDF eBook
Author Peter Poláčik
Publisher American Mathematical Soc.
Pages 100
Release 2020-05-13
Genre Education
ISBN 1470441128

Download Propagating Terraces and the Dynamics of Front-Like Solutions of Reaction-Diffusion Equations on R Book in PDF, Epub and Kindle

The author considers semilinear parabolic equations of the form ut=uxx+f(u),x∈R,t>0, where f a C1 function. Assuming that 0 and γ>0 are constant steady states, the author investigates the large-time behavior of the front-like solutions, that is, solutions u whose initial values u(x,0) are near γ for x≈−∞ and near 0 for x≈∞. If the steady states 0 and γ are both stable, the main theorem shows that at large times, the graph of u(⋅,t) is arbitrarily close to a propagating terrace (a system of stacked traveling fonts). The author proves this result without requiring monotonicity of u(⋅,0) or the nondegeneracy of zeros of f. The case when one or both of the steady states 0, γ is unstable is considered as well. As a corollary to the author's theorems, he shows that all front-like solutions are quasiconvergent: their ω-limit sets with respect to the locally uniform convergence consist of steady states. In the author's proofs he employs phase plane analysis, intersection comparison (or, zero number) arguments, and a geometric method involving the spatial trajectories {(u(x,t),ux(x,t)):x∈R}, t>0, of the solutions in question.

Higher Orbifolds and Deligne-Mumford Stacks as Structured Infinity-Topoi

Higher Orbifolds and Deligne-Mumford Stacks as Structured Infinity-Topoi
Title Higher Orbifolds and Deligne-Mumford Stacks as Structured Infinity-Topoi PDF eBook
Author David Carchedi
Publisher American Mathematical Soc.
Pages 132
Release 2020
Genre Education
ISBN 1470441446

Download Higher Orbifolds and Deligne-Mumford Stacks as Structured Infinity-Topoi Book in PDF, Epub and Kindle

The author develops a universal framework to study smooth higher orbifolds on the one hand and higher Deligne-Mumford stacks (as well as their derived and spectral variants) on the other, and use this framework to obtain a completely categorical description of which stacks arise as the functor of points of such objects. He chooses to model higher orbifolds and Deligne-Mumford stacks as infinity-topoi equipped with a structure sheaf, thus naturally generalizing the work of Lurie, but his approach applies not only to different settings of algebraic geometry such as classical algebraic geometry, derived algebraic geometry, and the algebraic geometry of commutative ring spectra but also to differential topology, complex geometry, the theory of supermanifolds, derived manifolds etc., where it produces a theory of higher generalized orbifolds appropriate for these settings. This universal framework yields new insights into the general theory of Deligne-Mumford stacks and orbifolds, including a representability criterion which gives a categorical characterization of such generalized Deligne-Mumford stacks. This specializes to a new categorical description of classical Deligne-Mumford stacks, which extends to derived and spectral Deligne-Mumford stacks as well.

An Elementary Recursive Bound for Effective Positivstellensatz and Hilbert’s 17th Problem

An Elementary Recursive Bound for Effective Positivstellensatz and Hilbert’s 17th Problem
Title An Elementary Recursive Bound for Effective Positivstellensatz and Hilbert’s 17th Problem PDF eBook
Author Henri Lombardi
Publisher American Mathematical Soc.
Pages 138
Release 2020-04-03
Genre Education
ISBN 147044108X

Download An Elementary Recursive Bound for Effective Positivstellensatz and Hilbert’s 17th Problem Book in PDF, Epub and Kindle

The authors prove an elementary recursive bound on the degrees for Hilbert's 17th problem. More precisely they express a nonnegative polynomial as a sum of squares of rational functions and obtain as degree estimates for the numerators and denominators the following tower of five exponentials 222d4k where d is the number of variables of the input polynomial. The authors' method is based on the proof of an elementary recursive bound on the degrees for Stengle's Positivstellensatz. More precisely the authors give an algebraic certificate of the emptyness of the realization of a system of sign conditions and obtain as degree bounds for this certificate a tower of five exponentials, namely 22(2max{2,d}4k+s2kmax{2,d}16kbit(d)) where d is a bound on the degrees, s is the number of polynomials and k is the number of variables of the input polynomials.

A Local Relative Trace Formula for the Ginzburg-Rallis Model: The Geometric Side

A Local Relative Trace Formula for the Ginzburg-Rallis Model: The Geometric Side
Title A Local Relative Trace Formula for the Ginzburg-Rallis Model: The Geometric Side PDF eBook
Author Chen Wan
Publisher American Mathematical Soc.
Pages 102
Release 2019-12-02
Genre Education
ISBN 1470436868

Download A Local Relative Trace Formula for the Ginzburg-Rallis Model: The Geometric Side Book in PDF, Epub and Kindle

Following the method developed by Waldspurger and Beuzart-Plessis in their proofs of the local Gan-Gross-Prasad conjecture, the author is able to prove the geometric side of a local relative trace formula for the Ginzburg-Rallis model. Then by applying such formula, the author proves a multiplicity formula of the Ginzburg-Rallis model for the supercuspidal representations. Using that multiplicity formula, the author proves the multiplicity one theorem for the Ginzburg-Rallis model over Vogan packets in the supercuspidal case.