Spectral Geometry of the Laplacian: Spectral Analysis and Differential Geometry of the Laplacian

Spectral Geometry of the Laplacian: Spectral Analysis and Differential Geometry of the Laplacian
Title Spectral Geometry of the Laplacian: Spectral Analysis and Differential Geometry of the Laplacian PDF eBook
Author Hajime Urakawa
Publisher World Scientific Publishing Company
Pages 350
Release 2017
Genre Mathematics
ISBN 9789813109087

Download Spectral Geometry of the Laplacian: Spectral Analysis and Differential Geometry of the Laplacian Book in PDF, Epub and Kindle

The totality of the eigenvalues of the Laplacian of a compact Riemannian manifold is called the spectrum. We describe how the spectrum determines a Riemannian manifold. The continuity of the eigenvalue of the Laplacian, Cheeger and Yau's estimate of the first eigenvalue, the Lichnerowicz-Obata's theorem on the first eigenvalue, the Cheng's estimates of the kth eigenvalues, and Payne-Pólya-Weinberger's inequality of the Dirichlet eigenvalue of the Laplacian are also described. Then, the theorem of Colin de Verdier, that is, the spectrum determines the totality of all the lengths of closed geodesics is described. We give the V Guillemin and D Kazhdan's theorem which determines the Riemannian manifold of negative curvature.

Spectral Geometry Of The Laplacian: Spectral Analysis And Differential Geometry Of The Laplacian

Spectral Geometry Of The Laplacian: Spectral Analysis And Differential Geometry Of The Laplacian
Title Spectral Geometry Of The Laplacian: Spectral Analysis And Differential Geometry Of The Laplacian PDF eBook
Author Hajime Urakawa
Publisher World Scientific
Pages 310
Release 2017-06-02
Genre Mathematics
ISBN 9813109106

Download Spectral Geometry Of The Laplacian: Spectral Analysis And Differential Geometry Of The Laplacian Book in PDF, Epub and Kindle

The totality of the eigenvalues of the Laplacian of a compact Riemannian manifold is called the spectrum. We describe how the spectrum determines a Riemannian manifold. The continuity of the eigenvalue of the Laplacian, Cheeger and Yau's estimate of the first eigenvalue, the Lichnerowicz-Obata's theorem on the first eigenvalue, the Cheng's estimates of the kth eigenvalues, and Payne-Pólya-Weinberger's inequality of the Dirichlet eigenvalue of the Laplacian are also described. Then, the theorem of Colin de Verdière, that is, the spectrum determines the totality of all the lengths of closed geodesics is described. We give the V Guillemin and D Kazhdan's theorem which determines the Riemannian manifold of negative curvature.

The Laplacian on a Riemannian Manifold

The Laplacian on a Riemannian Manifold
Title The Laplacian on a Riemannian Manifold PDF eBook
Author Steven Rosenberg
Publisher Cambridge University Press
Pages 190
Release 1997-01-09
Genre Mathematics
ISBN 9780521468312

Download The Laplacian on a Riemannian Manifold Book in PDF, Epub and Kindle

This text on analysis of Riemannian manifolds is aimed at students who have had a first course in differentiable manifolds.

Spectral Geometry

Spectral Geometry
Title Spectral Geometry PDF eBook
Author Pierre H. Berard
Publisher Springer
Pages 284
Release 2006-11-14
Genre Mathematics
ISBN 3540409580

Download Spectral Geometry Book in PDF, Epub and Kindle

Old and New Aspects in Spectral Geometry

Old and New Aspects in Spectral Geometry
Title Old and New Aspects in Spectral Geometry PDF eBook
Author M.-E. Craioveanu
Publisher Springer Science & Business Media
Pages 330
Release 2001-10-31
Genre Mathematics
ISBN 9781402000522

Download Old and New Aspects in Spectral Geometry Book in PDF, Epub and Kindle

It is known that to any Riemannian manifold (M, g ) , with or without boundary, one can associate certain fundamental objects. Among them are the Laplace-Beltrami opera tor and the Hodge-de Rham operators, which are natural [that is, they commute with the isometries of (M,g)], elliptic, self-adjoint second order differential operators acting on the space of real valued smooth functions on M and the spaces of smooth differential forms on M, respectively. If M is closed, the spectrum of each such operator is an infinite divergent sequence of real numbers, each eigenvalue being repeated according to its finite multiplicity. Spectral Geometry is concerned with the spectra of these operators, also the extent to which these spectra determine the geometry of (M, g) and the topology of M. This problem has been translated by several authors (most notably M. Kac). into the col loquial question "Can one hear the shape of a manifold?" because of its analogy with the wave equation. This terminology was inspired from earlier results of H. Weyl. It is known that the above spectra cannot completely determine either the geometry of (M , g) or the topology of M. For instance, there are examples of pairs of closed Riemannian manifolds with the same spectra corresponding to the Laplace-Beltrami operators, but which differ substantially in their geometry and which are even not homotopically equiva lent.

Geometry and Spectra of Compact Riemann Surfaces

Geometry and Spectra of Compact Riemann Surfaces
Title Geometry and Spectra of Compact Riemann Surfaces PDF eBook
Author Peter Buser
Publisher Springer Science & Business Media
Pages 473
Release 2010-10-29
Genre Mathematics
ISBN 0817649921

Download Geometry and Spectra of Compact Riemann Surfaces Book in PDF, Epub and Kindle

This monograph is a self-contained introduction to the geometry of Riemann Surfaces of constant curvature –1 and their length and eigenvalue spectra. It focuses on two subjects: the geometric theory of compact Riemann surfaces of genus greater than one, and the relationship of the Laplace operator with the geometry of such surfaces. Research workers and graduate students interested in compact Riemann surfaces will find here a number of useful tools and insights to apply to their investigations.

Spectral Geometry of Partial Differential Operators

Spectral Geometry of Partial Differential Operators
Title Spectral Geometry of Partial Differential Operators PDF eBook
Author Michael Ruzhansky
Publisher Chapman & Hall/CRC
Pages 0
Release 2020
Genre Mathematics
ISBN 9781138360716

Download Spectral Geometry of Partial Differential Operators Book in PDF, Epub and Kindle

Access; Differential; Durvudkhan; Geometry; Makhmud; Michael; OA; Open; Operators; Partial; Ruzhansky; Sadybekov; Spectral; Suragan.