Soot and Pah Formation in Counterflow Non-premixed Flames: Atmospheric Butane and Butanol Isomers, and Elevated-pressure Ethylene

Soot and Pah Formation in Counterflow Non-premixed Flames: Atmospheric Butane and Butanol Isomers, and Elevated-pressure Ethylene
Title Soot and Pah Formation in Counterflow Non-premixed Flames: Atmospheric Butane and Butanol Isomers, and Elevated-pressure Ethylene PDF eBook
Author Pradeep K Singh
Publisher
Pages
Release 2016
Genre Electronic dissertations
ISBN

Download Soot and Pah Formation in Counterflow Non-premixed Flames: Atmospheric Butane and Butanol Isomers, and Elevated-pressure Ethylene Book in PDF, Epub and Kindle

Due to the complexity of the fluid dynamics and non-linear reactions in the combustion zone, a simplified approach to study this process is required. Given these complexities, it is practically very challenging to take measurements in very high temperature and pressure zones in practical combustion systems, and if by any means those measurements can be made, it is equally challenging to analyze those measurements. Hence, in order to more comprehensively understand these processes, the problem needs to be resolved into the smaller and controllable sub-category of experiments, by creating laminar flamelets. One approach used in creating these flamelets is by establishing simplified non-premixed flames in the counterflow configuration. Alongwith all the fundamental properties of combustion, it is important to study the health hazard and environmentally detrimental emissions, such as soot and polycyclic aromatic hydrocarbons (PAHs). Such combustion studies need to be carried out using the non-intrusive in-situ optical diagnostics measurement techniques, such as the Laser Induced Incandescence (LII), Planar Laser Induced Fluorescence (PLIF) and Light Extinction (LE). These measurements for renewable biofuels aid in better understanding of the soot formation process, as well as in developing the fuel specific knowledge to bring them into commercial use. Furthermore since the most practical combustion systems operate at elevated pressures, it is also important to understand the soot formation process under elevated pressure conditions. Considering these, in the current study, the soot and PAH formation processes for butane and butanol isomers (C4 fuels) at atmospheric pressure; and for ethylene at elevated pressure have been experimentally investigated and compared in a counterflow non-premixed flame configuration. Under the investigated conditions, butane isomers were observed to form more soot than butanol isomers, thereby showing the effect of the hydroxyl group. The effects of isomeric structural differences on sooting propensity were also observed within the butane and butanol isomers. In addition, while soot volume fraction was seen to increase with increasing fuel mole fraction, the ranking of sooting propensity for these C4 fuels remained unchanged. For the conditions studied, the sooting tendency ranking generally follows n-butane > iso-butane > tert-butanol > n-butanol > iso-butanol > sec-butanol. . The counterflow non-premixed flames were also simulated using the gas-phase chemical kinetic models, USC Mech II [1], Sarathy et al. [2] and Merchant et al. [3] available in the literature to compute the spatially-resolved profiles of soot precursors, including acetylene and propargyl. For these C4 fuels, the PAHs of various aromatic ring size groups (2, 3, 4, and larger aromatic rings) have been characterized and compared in non-premixed combustion configuration. In particular, the formation and growth of the PAHs of different aromatic ring sizes in these counterflow flames was examined by tracking the PAH-PLIF signals at various detection wavelengths. PAH-PLIF experiments were conducted, by blending each of the branched-chain isomers with the baseline straight-chain isomer, in order to study the synergistic effects. The fuel structure effects on the PAH formation and growth processes were also analyzed by comparing the PAH growth pathways for these C4 fuels. A chemical kinetic model, POLIMI mechanism [4-7], available in the literature that includes both the fuel oxidation and the PAH chemistry was also used to simulate and compare the PAH species up to A4 rings. Counterflow non-premixed sooting ethylene‒air flames with fuel mole fractions of 0.20‒0.40 in the pressure range of 1‒6 atm were investigated experimentally with the laser diagnostic techniques of LII, PLIF and LE. A better understating of the quantitative soot formation process has been developed for ethylene counterflow flames under elevated pressure conditions. The effect of pressure on the formation of PAHs with different aromatic ring sizes has also been determined qualitatively. With increase in pressure, the increase in soot volume fraction and PAH-PLIF signals were observed. A chemical kinetic model available in the literature, that includes both the fuel oxidation and the PAH chemistry, was also used to simulate and compare the PAH species up to A4 rings. At the incipient stage of the PAH formation, the simulated results exhibited similar behavior to the experimental observations. A chemical kinetic model, WF-PAH mechanism [8], available in the literature was also used to compute the PAHs up to four aromatic rings. This chemical kinetic model predicted enhancing PAHs formation with an increase in pressure, consistent with the experimental trend.

Soot Formation in Non-premixed Laminar Flames at Subcritical and Supercritical Pressures

Soot Formation in Non-premixed Laminar Flames at Subcritical and Supercritical Pressures
Title Soot Formation in Non-premixed Laminar Flames at Subcritical and Supercritical Pressures PDF eBook
Author
Publisher
Pages
Release 2006
Genre
ISBN

Download Soot Formation in Non-premixed Laminar Flames at Subcritical and Supercritical Pressures Book in PDF, Epub and Kindle

An experimental study was conducted using axisymmetric co-flow laminar diffusion flames of methane-air, methane-oxygen and ethylene-air to examine the effect of pressure on soot formation and the structure of the temperature field. A liquid fuel burner was designed and built to observe the sooting behavior of methanol-air and n-heptane-air laminar diffusion flames at elevated pressures up to 50 atm. A non-intrusive, line-of-sight spectral soot emission (SSE) diagnostic technique was used to determine the temperature and the soot volume fraction of methane-air flames up to 60 atm, methane-oxygen flames up to 90 atm and ethylene-air flames up to 35 atm. The physical flame structure of the methane-air and methane-oxygen diffusion flames were characterized over the pressure range of 10 to 100 atm and up to 35 atm for ethylene-air flames. The flame height, marked by the visible soot radiation emission, remained relatively constant for methane-air and ethylene-air flames over their respected pressure ranges, while the visible flame height for the methane-oxygen flames was reduced by over 50 % between 10 and 100 atm. During methane-air experiments, observations of anomalous occurrence of liquid material formation at 60 atm and above were recorded. The maximum conversion of the carbon in the fuel to soot exhibited a strong power-law dependence on pressure. At pressures 10 to 30 atm, the pressure exponent is approximately 0.73 for methane-air flames. At higher pressures, between 30 and 60 atm, the pressure exponent is approximately 0.33. The maximum fuel carbon conversion to soot is 12.6 % at 60 atm. For methane-oxygen flames, the pressure exponent is approximately 1.2 for pressures between 10 and 40 atm. At pressures between 50 and 70 atm, the pressure exponent is about -3.8 and approximately -12 for 70 to 90 atm. The maximum fuel carbon conversion to soot is 2 % at 40 atm. For ethylene-air flames, the pressure exponent is approximately 1.4 between 10 and 30 atm. The maximu.

Soot Formation in Non-premixed Laminar Flames at Subcritical and Supercritical Pressures

Soot Formation in Non-premixed Laminar Flames at Subcritical and Supercritical Pressures
Title Soot Formation in Non-premixed Laminar Flames at Subcritical and Supercritical Pressures PDF eBook
Author Hyun Il Joo
Publisher
Pages
Release 2010
Genre
ISBN

Download Soot Formation in Non-premixed Laminar Flames at Subcritical and Supercritical Pressures Book in PDF, Epub and Kindle

An experimental study was conducted using axisymmetric co-flow laminar diffusion flames of methane-air, methane-oxygen and ethylene-air to examine the effect of pressure on soot formation and the structure of the temperature field. A liquid fuel burner was designed and built to observe the sooting behavior of methanol-air and n-heptane-air laminar diffusion flames at elevated pressures up to 50 atm. A non-intrusive, line-of-sight spectral soot emission (SSE) diagnostic technique was used to determine the temperature and the soot volume fraction of methane-air flames up to 60 atm, methane-oxygen flames up to 90 atm and ethylene-air flames up to 35 atm. The physical flame structure of the methane-air and methane-oxygen diffusion flames were characterized over the pressure range of 10 to 100 atm and up to 35 atm for ethylene-air flames. The flame height, marked by the visible soot radiation emission, remained relatively constant for methane-air and ethylene-air flames over their respected pressure ranges, while the visible flame height for the methane-oxygen flames was reduced by over 50 % between 10 and 100 atm. During methane-air experiments, observations of anomalous occurrence of liquid material formation at 60 atm and above were recorded. The maximum conversion of the carbon in the fuel to soot exhibited a strong power-law dependence on pressure. At pressures 10 to 30 atm, the pressure exponent is approximately 0.73 for methane-air flames. At higher pressures, between 30 and 60 atm, the pressure exponent is approximately 0.33. The maximum fuel carbon conversion to soot is 12.6 % at 60 atm. For methane-oxygen flames, the pressure exponent is approximately 1.2 for pressures between 10 and 40 atm. At pressures between 50 and 70 atm, the pressure exponent is about -3.8 and approximately -12 for 70 to 90 atm. The maximum fuel carbon conversion to soot is 2 % at 40 atm. For ethylene-air flames, the pressure exponent is approximately 1.4 between 10 and 30 atm. The maximum carbon conversion to soot is approximately 6.5 % at 30 atm and remained constant at higher pressures.

Measurements of Soot Formation and Hydroxyl Concentration in Near Critical Equivalence Ratio Premixed Ethylene Flame

Measurements of Soot Formation and Hydroxyl Concentration in Near Critical Equivalence Ratio Premixed Ethylene Flame
Title Measurements of Soot Formation and Hydroxyl Concentration in Near Critical Equivalence Ratio Premixed Ethylene Flame PDF eBook
Author Michael Andrew Inbody
Publisher
Pages 504
Release 1993
Genre Chemical kinetics
ISBN

Download Measurements of Soot Formation and Hydroxyl Concentration in Near Critical Equivalence Ratio Premixed Ethylene Flame Book in PDF, Epub and Kindle

The Formation of Aromatics and PAH's in Laminar Flames

The Formation of Aromatics and PAH's in Laminar Flames
Title The Formation of Aromatics and PAH's in Laminar Flames PDF eBook
Author
Publisher
Pages
Release 1999
Genre
ISBN

Download The Formation of Aromatics and PAH's in Laminar Flames Book in PDF, Epub and Kindle

The formation of aromatics and PAH's is an important problem in combustion. These compounds are believed to contribute to the formation of soot whose emission from diesel engines is regulated widely throughout the industrial world. Additionally, the United States Environmental Protection Agency regulates the emission of many aromatics and PAH species from stationary industrial burners, under the 1990 Clean Air Act Amendments. The above emission regulations have created much interest in understanding how these species are formed in combustion systems. Much previous work has been done on aromatics and PAH's. The work is too extensive to review here, but is reviewed in Reference 1. A few recent developments are highlighted here. McEnally, Pfefferle and coworkers have studied aromatic, PAH and soot formation in a variety of non-premixed flames with hydrocarbon additives [2-4]. They found additives that contain a C5 ring increase the concentration of aromatics and soot [4]. Howard and coworkers have studied the formation of aromatic and PAH's in low pressure, premixed, laminar hydrocarbon flames. They found the cyclopentadienyl radical to be a key species in naphthalene formation in a fuel-rich, benzene/Ar/O2 flame [5].

High-pressure Soot Formation and Diffusion Flame Extinction Characteristics of Gaseous and Liquid Fuels

High-pressure Soot Formation and Diffusion Flame Extinction Characteristics of Gaseous and Liquid Fuels
Title High-pressure Soot Formation and Diffusion Flame Extinction Characteristics of Gaseous and Liquid Fuels PDF eBook
Author Ahmet Emre Karatas
Publisher
Pages
Release 2014
Genre
ISBN

Download High-pressure Soot Formation and Diffusion Flame Extinction Characteristics of Gaseous and Liquid Fuels Book in PDF, Epub and Kindle

Effects of Temperature and Hydroxyl Concentration on Incipient Soot Formation in Premixed Flames

Effects of Temperature and Hydroxyl Concentration on Incipient Soot Formation in Premixed Flames
Title Effects of Temperature and Hydroxyl Concentration on Incipient Soot Formation in Premixed Flames PDF eBook
Author Mark Miller Harris
Publisher
Pages 444
Release 1985
Genre Flame
ISBN

Download Effects of Temperature and Hydroxyl Concentration on Incipient Soot Formation in Premixed Flames Book in PDF, Epub and Kindle