Solving Problems in Mathematical Analysis, Part I
Title | Solving Problems in Mathematical Analysis, Part I PDF eBook |
Author | Tomasz Radożycki |
Publisher | Springer |
Pages | 369 |
Release | 2020-02-21 |
Genre | Mathematics |
ISBN | 9783030358433 |
This textbook offers an extensive list of completely solved problems in mathematical analysis. This first of three volumes covers sets, functions, limits, derivatives, integrals, sequences and series, to name a few. The series contains the material corresponding to the first three or four semesters of a course in Mathematical Analysis. Based on the author’s years of teaching experience, this work stands out by providing detailed solutions (often several pages long) to the problems. The basic premise of the book is that no topic should be left unexplained, and no question that could realistically arise while studying the solutions should remain unanswered. The style and format are straightforward and accessible. In addition, each chapter includes exercises for students to work on independently. Answers are provided to all problems, allowing students to check their work. Though chiefly intended for early undergraduate students of Mathematics, Physics and Engineering, the book will also appeal to students from other areas with an interest in Mathematical Analysis, either as supplementary reading or for independent study.
Solving Problems in Mathematical Analysis, Part I
Title | Solving Problems in Mathematical Analysis, Part I PDF eBook |
Author | Tomasz Radożycki |
Publisher | Springer Nature |
Pages | 375 |
Release | 2020-02-20 |
Genre | Mathematics |
ISBN | 3030358445 |
This textbook offers an extensive list of completely solved problems in mathematical analysis. This first of three volumes covers sets, functions, limits, derivatives, integrals, sequences and series, to name a few. The series contains the material corresponding to the first three or four semesters of a course in Mathematical Analysis. Based on the author’s years of teaching experience, this work stands out by providing detailed solutions (often several pages long) to the problems. The basic premise of the book is that no topic should be left unexplained, and no question that could realistically arise while studying the solutions should remain unanswered. The style and format are straightforward and accessible. In addition, each chapter includes exercises for students to work on independently. Answers are provided to all problems, allowing students to check their work. Though chiefly intended for early undergraduate students of Mathematics, Physics and Engineering, the book will also appeal to students from other areas with an interest in Mathematical Analysis, either as supplementary reading or for independent study.
A Problem Book in Real Analysis
Title | A Problem Book in Real Analysis PDF eBook |
Author | Asuman G. Aksoy |
Publisher | Springer Science & Business Media |
Pages | 257 |
Release | 2010-03-10 |
Genre | Mathematics |
ISBN | 1441912967 |
Education is an admirable thing, but it is well to remember from time to time that nothing worth knowing can be taught. Oscar Wilde, “The Critic as Artist,” 1890. Analysis is a profound subject; it is neither easy to understand nor summarize. However, Real Analysis can be discovered by solving problems. This book aims to give independent students the opportunity to discover Real Analysis by themselves through problem solving. ThedepthandcomplexityofthetheoryofAnalysiscanbeappreciatedbytakingaglimpseatits developmental history. Although Analysis was conceived in the 17th century during the Scienti?c Revolution, it has taken nearly two hundred years to establish its theoretical basis. Kepler, Galileo, Descartes, Fermat, Newton and Leibniz were among those who contributed to its genesis. Deep conceptual changes in Analysis were brought about in the 19th century by Cauchy and Weierstrass. Furthermore, modern concepts such as open and closed sets were introduced in the 1900s. Today nearly every undergraduate mathematics program requires at least one semester of Real Analysis. Often, students consider this course to be the most challenging or even intimidating of all their mathematics major requirements. The primary goal of this book is to alleviate those concerns by systematically solving the problems related to the core concepts of most analysis courses. In doing so, we hope that learning analysis becomes less taxing and thereby more satisfying.
Modern Real and Complex Analysis
Title | Modern Real and Complex Analysis PDF eBook |
Author | Bernard R. Gelbaum |
Publisher | John Wiley & Sons |
Pages | 506 |
Release | 2011-02-25 |
Genre | Mathematics |
ISBN | 111803080X |
Modern Real and Complex Analysis Thorough, well-written, and encyclopedic in its coverage, this textoffers a lucid presentation of all the topics essential to graduatestudy in analysis. While maintaining the strictest standards ofrigor, Professor Gelbaum's approach is designed to appeal tointuition whenever possible. Modern Real and Complex Analysisprovides up-to-date treatment of such subjects as the Daniellintegration, differentiation, functional analysis and Banachalgebras, conformal mapping and Bergman's kernels, defectivefunctions, Riemann surfaces and uniformization, and the role ofconvexity in analysis. The text supplies an abundance of exercisesand illustrative examples to reinforce learning, and extensivenotes and remarks to help clarify important points.
Problems in Mathematical Analysis
Title | Problems in Mathematical Analysis PDF eBook |
Author | Wieslawa J. Kaczor |
Publisher | American Mathematical Soc. |
Pages | 400 |
Release | 2000 |
Genre | Mathematical analysis |
ISBN | 9780821884430 |
Solving Problems in Mathematical Analysis, Part III
Title | Solving Problems in Mathematical Analysis, Part III PDF eBook |
Author | Tomasz Radożycki |
Publisher | Springer Nature |
Pages | 386 |
Release | 2020-02-24 |
Genre | Mathematics |
ISBN | 3030385965 |
This textbook offers an extensive list of completely solved problems in mathematical analysis. This third of three volumes covers curves and surfaces, conditional extremes, curvilinear integrals, complex functions, singularities and Fourier series. The series contains the material corresponding to the first three or four semesters of a course in Mathematical Analysis. Based on the author’s years of teaching experience, this work stands out by providing detailed solutions (often several pages long) to the problems. The basic premise of the book is that no topic should be left unexplained, and no question that could realistically arise while studying the solutions should remain unanswered. The style and format are straightforward and accessible. In addition, each chapter includes exercises for students to work on independently. Answers are provided to all problems, allowing students to check their work. Though chiefly intended for early undergraduate students of Mathematics, Physics and Engineering, the book will also appeal to students from other areas with an interest in Mathematical Analysis, either as supplementary reading or for independent study.
Limits, Series, and Fractional Part Integrals
Title | Limits, Series, and Fractional Part Integrals PDF eBook |
Author | Ovidiu Furdui |
Publisher | Springer Science & Business Media |
Pages | 289 |
Release | 2013-05-30 |
Genre | Mathematics |
ISBN | 1461467624 |
This book features challenging problems of classical analysis that invite the reader to explore a host of strategies and tools used for solving problems of modern topics in real analysis. This volume offers an unusual collection of problems — many of them original — specializing in three topics of mathematical analysis: limits, series, and fractional part integrals. The work is divided into three parts, each containing a chapter dealing with a particular problem type as well as a very short section of hints to select problems. The first chapter collects problems on limits of special sequences and Riemann integrals; the second chapter focuses on the calculation of fractional part integrals with a special section called ‘Quickies’ which contains problems that have had unexpected succinct solutions. The final chapter offers the reader an assortment of problems with a flavor towards the computational aspects of infinite series and special products, many of which are new to the literature. Each chapter contains a section of difficult problems which are motivated by other problems in the book. These ‘Open Problems’ may be considered research projects for students who are studying advanced calculus, and which are intended to stimulate creativity and the discovery of new and original methods for proving known results and establishing new ones. This stimulating collection of problems is intended for undergraduate students with a strong background in analysis; graduate students in mathematics, physics, and engineering; researchers; and anyone who works on topics at the crossroad between pure and applied mathematics. Moreover, the level of problems is appropriate for students involved in the Putnam competition and other high level mathematical contests.