Smooth Four-Manifolds and Complex Surfaces

Smooth Four-Manifolds and Complex Surfaces
Title Smooth Four-Manifolds and Complex Surfaces PDF eBook
Author Robert Friedman
Publisher Springer Science & Business Media
Pages 532
Release 2013-03-09
Genre Mathematics
ISBN 3662030284

Download Smooth Four-Manifolds and Complex Surfaces Book in PDF, Epub and Kindle

In 1961 Smale established the generalized Poincare Conjecture in dimensions greater than or equal to 5 [129] and proceeded to prove the h-cobordism theorem [130]. This result inaugurated a major effort to classify all possible smooth and topological structures on manifolds of dimension at least 5. By the mid 1970's the main outlines of this theory were complete, and explicit answers (especially concerning simply connected manifolds) as well as general qualitative results had been obtained. As an example of such a qualitative result, a closed, simply connected manifold of dimension 2: 5 is determined up to finitely many diffeomorphism possibilities by its homotopy type and its Pontrjagin classes. There are similar results for self-diffeomorphisms, which, at least in the simply connected case, say that the group of self-diffeomorphisms of a closed manifold M of dimension at least 5 is commensurate with an arithmetic subgroup of the linear algebraic group of all automorphisms of its so-called rational minimal model which preserve the Pontrjagin classes [131]. Once the high dimensional theory was in good shape, attention shifted to the remaining, and seemingly exceptional, dimensions 3 and 4. The theory behind the results for manifolds of dimension at least 5 does not carryover to manifolds of these low dimensions, essentially because there is no longer enough room to maneuver. Thus new ideas are necessary to study manifolds of these "low" dimensions.

Smooth Four-Manifolds and Complex Surfaces

Smooth Four-Manifolds and Complex Surfaces
Title Smooth Four-Manifolds and Complex Surfaces PDF eBook
Author Robert Friedman
Publisher
Pages 536
Release 2014-01-15
Genre
ISBN 9783662030295

Download Smooth Four-Manifolds and Complex Surfaces Book in PDF, Epub and Kindle

The Wild World of 4-Manifolds

The Wild World of 4-Manifolds
Title The Wild World of 4-Manifolds PDF eBook
Author Alexandru Scorpan
Publisher American Mathematical Soc.
Pages 642
Release 2005-05-10
Genre Mathematics
ISBN 0821837494

Download The Wild World of 4-Manifolds Book in PDF, Epub and Kindle

What a wonderful book! I strongly recommend this book to anyone, especially graduate students, interested in getting a sense of 4-manifolds. --MAA Reviews The book gives an excellent overview of 4-manifolds, with many figures and historical notes. Graduate students, nonexperts, and experts alike will enjoy browsing through it. -- Robion C. Kirby, University of California, Berkeley This book offers a panorama of the topology of simply connected smooth manifolds of dimension four. Dimension four is unlike any other dimension; it is large enough to have room for wild things to happen, but small enough so that there is no room to undo the wildness. For example, only manifolds of dimension four can exhibit infinitely many distinct smooth structures. Indeed, their topology remains the least understood today. To put things in context, the book starts with a survey of higher dimensions and of topological 4-manifolds. In the second part, the main invariant of a 4-manifold--the intersection form--and its interaction with the topology of the manifold are investigated. In the third part, as an important source of examples, complex surfaces are reviewed. In the final fourth part of the book, gauge theory is presented; this differential-geometric method has brought to light how unwieldy smooth 4-manifolds truly are, and while bringing new insights, has raised more questions than answers. The structure of the book is modular, organized into a main track of about two hundred pages, augmented by extensive notes at the end of each chapter, where many extra details, proofs and developments are presented. To help the reader, the text is peppered with over 250 illustrations and has an extensive index.

The Seiberg-Witten Equations and Applications to the Topology of Smooth Four-Manifolds. (MN-44), Volume 44

The Seiberg-Witten Equations and Applications to the Topology of Smooth Four-Manifolds. (MN-44), Volume 44
Title The Seiberg-Witten Equations and Applications to the Topology of Smooth Four-Manifolds. (MN-44), Volume 44 PDF eBook
Author John W. Morgan
Publisher Princeton University Press
Pages 138
Release 2014-09-08
Genre Mathematics
ISBN 1400865166

Download The Seiberg-Witten Equations and Applications to the Topology of Smooth Four-Manifolds. (MN-44), Volume 44 Book in PDF, Epub and Kindle

The recent introduction of the Seiberg-Witten invariants of smooth four-manifolds has revolutionized the study of those manifolds. The invariants are gauge-theoretic in nature and are close cousins of the much-studied SU(2)-invariants defined over fifteen years ago by Donaldson. On a practical level, the new invariants have proved to be more powerful and have led to a vast generalization of earlier results. This book is an introduction to the Seiberg-Witten invariants. The work begins with a review of the classical material on Spin c structures and their associated Dirac operators. Next comes a discussion of the Seiberg-Witten equations, which is set in the context of nonlinear elliptic operators on an appropriate infinite dimensional space of configurations. It is demonstrated that the space of solutions to these equations, called the Seiberg-Witten moduli space, is finite dimensional, and its dimension is then computed. In contrast to the SU(2)-case, the Seiberg-Witten moduli spaces are shown to be compact. The Seiberg-Witten invariant is then essentially the homology class in the space of configurations represented by the Seiberg-Witten moduli space. The last chapter gives a flavor for the applications of these new invariants by computing the invariants for most Kahler surfaces and then deriving some basic toological consequences for these surfaces.

The Wild World of 4-Manifolds

The Wild World of 4-Manifolds
Title The Wild World of 4-Manifolds PDF eBook
Author Alexandru Scorpan
Publisher American Mathematical Society
Pages 614
Release 2022-01-26
Genre Mathematics
ISBN 1470468611

Download The Wild World of 4-Manifolds Book in PDF, Epub and Kindle

What a wonderful book! I strongly recommend this book to anyone, especially graduate students, interested in getting a sense of 4-manifolds. —MAA Reviews The book gives an excellent overview of 4-manifolds, with many figures and historical notes. Graduate students, nonexperts, and experts alike will enjoy browsing through it. — Robion C. Kirby, University of California, Berkeley This book offers a panorama of the topology of simply connected smooth manifolds of dimension four. Dimension four is unlike any other dimension; it is large enough to have room for wild things to happen, but small enough so that there is no room to undo the wildness. For example, only manifolds of dimension four can exhibit infinitely many distinct smooth structures. Indeed, their topology remains the least understood today. To put things in context, the book starts with a survey of higher dimensions and of topological 4-manifolds. In the second part, the main invariant of a 4-manifold—the intersection form—and its interaction with the topology of the manifold are investigated. In the third part, as an important source of examples, complex surfaces are reviewed. In the final fourth part of the book, gauge theory is presented; this differential-geometric method has brought to light how unwieldy smooth 4-manifolds truly are, and while bringing new insights, has raised more questions than answers. The structure of the book is modular, organized into a main track of about two hundred pages, augmented by extensive notes at the end of each chapter, where many extra details, proofs and developments are presented. To help the reader, the text is peppered with over 250 illustrations and has an extensive index.

Geometry and Analysis on Complex Manifolds

Geometry and Analysis on Complex Manifolds
Title Geometry and Analysis on Complex Manifolds PDF eBook
Author Toshiki Mabuchi
Publisher World Scientific
Pages 268
Release 1994
Genre Mathematics
ISBN 9789810220679

Download Geometry and Analysis on Complex Manifolds Book in PDF, Epub and Kindle

This volume presents papers dedicated to Professor Shoshichi Kobayashi, commemorating the occasion of his sixtieth birthday on January 4, 1992.The principal theme of this volume is “Geometry and Analysis on Complex Manifolds”. It emphasizes the wide mathematical influence that Professor Kobayashi has on areas ranging from differential geometry to complex analysis and algebraic geometry. It covers various materials including holomorphic vector bundles on complex manifolds, Kähler metrics and Einstein–Hermitian metrics, geometric function theory in several complex variables, and symplectic or non-Kähler geometry on complex manifolds. These are areas in which Professor Kobayashi has made strong impact and is continuing to make many deep invaluable contributions.

Geometry And Analysis On Complex Manifolds: Festschrift For S Kobayashi's 60th Birthday

Geometry And Analysis On Complex Manifolds: Festschrift For S Kobayashi's 60th Birthday
Title Geometry And Analysis On Complex Manifolds: Festschrift For S Kobayashi's 60th Birthday PDF eBook
Author Toshiki Mabuchi
Publisher World Scientific
Pages 261
Release 1994-12-09
Genre Mathematics
ISBN 9814501220

Download Geometry And Analysis On Complex Manifolds: Festschrift For S Kobayashi's 60th Birthday Book in PDF, Epub and Kindle

This volume presents papers dedicated to Professor Shoshichi Kobayashi, commemorating the occasion of his sixtieth birthday on January 4, 1992.The principal theme of this volume is “Geometry and Analysis on Complex Manifolds”. It emphasizes the wide mathematical influence that Professor Kobayashi has on areas ranging from differential geometry to complex analysis and algebraic geometry. It covers various materials including holomorphic vector bundles on complex manifolds, Kähler metrics and Einstein-Hermitian metrics, geometric function theory in several complex variables, and symplectic or non-Kähler geometry on complex manifolds. These are areas in which Professor Kobayashi has made strong impact and is continuing to make many deep invaluable contributions.