Singularities, Part 1
Title | Singularities, Part 1 PDF eBook |
Author | Peter Orlik |
Publisher | American Mathematical Soc. |
Pages | 704 |
Release | 1983 |
Genre | Mathematics |
ISBN | 0821814508 |
On April 7-10, 1980, the American Mathematical Society sponsored a Symposium on the Mathematical Heritage of Henri Poincari, held at Indiana University, Bloomington, Indiana. This title presents the written versions this Symposium. It contains two papers by invited speakers who were not able to attend, S S Chern and L Nirenberg.
Spacetime and Singularities
Title | Spacetime and Singularities PDF eBook |
Author | Gregory L. Naber |
Publisher | Cambridge University Press |
Pages | 196 |
Release | 1988 |
Genre | Mathematics |
ISBN | 9780521336123 |
An elementary introduction to the geometrical methods and notions used in special and general relativity. Emphasizes the ideas concerned with structure of space-time that play a role in Penrose-Hawking singularity theorems.
Singularities of Differentiable Maps
Title | Singularities of Differentiable Maps PDF eBook |
Author | V.I. Arnold |
Publisher | Springer Science & Business Media |
Pages | 390 |
Release | 2012-12-06 |
Genre | Mathematics |
ISBN | 1461251540 |
... there is nothing so enthralling, so grandiose, nothing that stuns or captivates the human soul quite so much as a first course in a science. After the first five or six lectures one already holds the brightest hopes, already sees oneself as a seeker after truth. I too have wholeheartedly pursued science passionately, as one would a beloved woman. I was a slave, and sought no other sun in my life. Day and night I crammed myself, bending my back, ruining myself over my books; I wept when I beheld others exploiting science fot personal gain. But I was not long enthralled. The truth is every science has a beginning, but never an end - they go on for ever like periodic fractions. Zoology, for example, has discovered thirty-five thousand forms of life ... A. P. Chekhov. "On the road" In this book a start is made to the "zoology" of the singularities of differentiable maps. This theory is a young branch of analysis which currently occupies a central place in mathematics; it is the crossroads of paths leading from very abstract corners of mathematics (such as algebraic and differential geometry and topology, Lie groups and algebras, complex manifolds, commutative algebra and the like) to the most applied areas (such as differential equations and dynamical systems, optimal control, the theory of bifurcations and catastrophes, short-wave and saddle-point asymptotics and geometrical and wave optics).
Introduction to Singularities and Deformations
Title | Introduction to Singularities and Deformations PDF eBook |
Author | Gert-Martin Greuel |
Publisher | Springer Science & Business Media |
Pages | 482 |
Release | 2007-02-23 |
Genre | Mathematics |
ISBN | 3540284192 |
Singularity theory is a young, rapidly-growing topic with connections to algebraic geometry, complex analysis, commutative algebra, representations theory, Lie groups theory and topology, and many applications in the natural and technical sciences. This book presents the basic singularity theory of analytic spaces, including local deformation theory and the theory of plane curve singularities. It includes complete proofs.
Algebraic Geometry
Title | Algebraic Geometry PDF eBook |
Author | |
Publisher | |
Pages | |
Release | 1987 |
Genre | Geometry, Algebraic |
ISBN |
Resolution of Curve and Surface Singularities in Characteristic Zero
Title | Resolution of Curve and Surface Singularities in Characteristic Zero PDF eBook |
Author | K. Kiyek |
Publisher | Springer Science & Business Media |
Pages | 506 |
Release | 2012-09-11 |
Genre | Mathematics |
ISBN | 1402020295 |
The Curves The Point of View of Max Noether Probably the oldest references to the problem of resolution of singularities are found in Max Noether's works on plane curves [cf. [148], [149]]. And probably the origin of the problem was to have a formula to compute the genus of a plane curve. The genus is the most useful birational invariant of a curve in classical projective geometry. It was long known that, for a plane curve of degree n having l m ordinary singular points with respective multiplicities ri, i E {1, . . . , m}, the genus p of the curve is given by the formula = (n - l)(n - 2) _ ~ "r. (r. _ 1) P 2 2 L. . ,. •• . Of course, the problem now arises: how to compute the genus of a plane curve having some non-ordinary singularities. This leads to the natural question: can we birationally transform any (singular) plane curve into another one having only ordinary singularities? The answer is positive. Let us give a flavor (without proofs) 2 on how Noether did it • To solve the problem, it is enough to consider a special kind of Cremona trans formations, namely quadratic transformations of the projective plane. Let ~ be a linear system of conics with three non-collinear base points r = {Ao, AI, A }, 2 and take a projective frame of the type {Ao, AI, A ; U}.
Singularities
Title | Singularities PDF eBook |
Author | Susan Howe |
Publisher | Wesleyan University Press |
Pages | 88 |
Release | 1990-10 |
Genre | Poetry |
ISBN | 9780819511942 |
A celebration of language by a gifted poet.