Silicon, Germanium, and Their Alloys
Title | Silicon, Germanium, and Their Alloys PDF eBook |
Author | Gudrun Kissinger |
Publisher | CRC Press |
Pages | 424 |
Release | 2014-12-09 |
Genre | Science |
ISBN | 1466586656 |
Despite the vast knowledge accumulated on silicon, germanium, and their alloys, these materials still demand research, eminently in view of the improvement of knowledge on silicon-germanium alloys and the potentialities of silicon as a substrate for high-efficiency solar cells and for compound semiconductors and the ongoing development of nanodevic
Silicon-Germanium Carbon Alloys
Title | Silicon-Germanium Carbon Alloys PDF eBook |
Author | S. Pantellides |
Publisher | CRC Press |
Pages | 552 |
Release | 2002-07-26 |
Genre | Technology & Engineering |
ISBN | 9781560329633 |
Carbon (C) and Silicon Germanium (SiGe) work like a magic sauce. At least in small concentrations, they make everything taste better. It is remarkable enough that SiGe, a new material, and the heterobipolar transistor, a new device, appear on the brink of impacting the exploding wireless market. The addition of C to SiGe, albeit in small concentrations, looks to have breakthrough potential. Here, at last, is proof that materials science can put a rocket booster on the silicon-mind, the silicon transistor. Scientific excitement arises, as always, from the new possibilities a multicomponent materials system offers. Bandgaps can be changed, strains can be tuned, and properties can be tailored. This is catnip to the materials scientist. The wide array of techniques applied here to the SiGeC system bear testimony to the ingenious approaches now available for mastering the complexities of new materials
Germanium Silicon: Physics and Materials
Title | Germanium Silicon: Physics and Materials PDF eBook |
Author | |
Publisher | Academic Press |
Pages | 459 |
Release | 1998-11-09 |
Genre | Technology & Engineering |
ISBN | 0080864546 |
Since its inception in 1966, the series of numbered volumes known as Semiconductors and Semimetals has distinguished itself through the careful selection of well-known authors, editors, and contributors. The "Willardson and Beer" Series, as it is widely known, has succeeded in publishing numerous landmark volumes and chapters. Not only did many of these volumes make an impact at the time of their publication, but they continue to be well-cited years after their original release. Recently, Professor Eicke R. Weber of the University of California at Berkeley joined as a co-editor of the series. Professor Weber, a well-known expert in the field of semiconductor materials, will further contribute to continuing the series' tradition of publishing timely, highly relevant, and long-impacting volumes. Some of the recent volumes, such as Hydrogen in Semiconductors, Imperfections in III/V Materials, Epitaxial Microstructures, High-Speed Heterostructure Devices, Oxygen in Silicon, and others promise that this tradition will be maintained and even expanded.Reflecting the truly interdisciplinary nature of the field that the series covers, the volumes in Semiconductors and Semimetals have been and will continue to be of great interest to physicists, chemists, materials scientists, and device engineers in modern industry.
Thermoelectrics
Title | Thermoelectrics PDF eBook |
Author | N. M. Ravindra |
Publisher | Springer |
Pages | 131 |
Release | 2018-08-29 |
Genre | Technology & Engineering |
ISBN | 3319963414 |
This book provides a concise but comprehensive introduction to the fundamentals and current state of the art in thermoelectrics. Addressing an audience of materials scientists and engineers, the book covers theory, materials selection, and applications, with a wide variety of case studies reflecting the most up-to-date research approaches from the past decade, from single crystal to polycrystalline form and from bulk to thin films to nano dimensions. The world is facing major challenges for finding alternate energy sources that can satisfy the increasing demand for energy consumption while preserving the environment. The field of thermoelectrics has long been recognized as a potential and ideal source of clean energy. However, the relatively low conversion efficiency of thermoelectric devices has prevented their utility on a large scale. While addressing the need for thermal management in materials, device components, and systems, thermoelectrics provides a fundamental solution to waste heat recovery and temperature control. This book summarizes the global efforts that have been made to enhance the figure of merit of various thermoelectric materials by choosing appropriate processes and their influence on properties and performance. Because of these advances, today, thermoelectric devices are found in mainstream applications such as automobiles and power generators, as opposed to just a few years ago when they could only be used in niche applications such as in aeronautics, infrared imaging, and space. However, the continued gap between fundamental theoretical results and actual experimental data of figure of merit and performance continues to challenge the commercial applications of thermoelectrics. This book presents both recent achievements and continuing challenges, and represents essential reading for researchers working in this area in universities, industry, and national labs.
Silicon-Germanium (SiGe) Nanostructures
Title | Silicon-Germanium (SiGe) Nanostructures PDF eBook |
Author | Y. Shiraki |
Publisher | Elsevier |
Pages | 649 |
Release | 2011-02-26 |
Genre | Technology & Engineering |
ISBN | 0857091425 |
Nanostructured silicon-germanium (SiGe) opens up the prospects of novel and enhanced electronic device performance, especially for semiconductor devices. Silicon-germanium (SiGe) nanostructures reviews the materials science of nanostructures and their properties and applications in different electronic devices.The introductory part one covers the structural properties of SiGe nanostructures, with a further chapter discussing electronic band structures of SiGe alloys. Part two concentrates on the formation of SiGe nanostructures, with chapters on different methods of crystal growth such as molecular beam epitaxy and chemical vapour deposition. This part also includes chapters covering strain engineering and modelling. Part three covers the material properties of SiGe nanostructures, including chapters on such topics as strain-induced defects, transport properties and microcavities and quantum cascade laser structures. In Part four, devices utilising SiGe alloys are discussed. Chapters cover ultra large scale integrated applications, MOSFETs and the use of SiGe in different types of transistors and optical devices.With its distinguished editors and team of international contributors, Silicon-germanium (SiGe) nanostructures is a standard reference for researchers focusing on semiconductor devices and materials in industry and academia, particularly those interested in nanostructures. - Reviews the materials science of nanostructures and their properties and applications in different electronic devices - Assesses the structural properties of SiGe nanostructures, discussing electronic band structures of SiGe alloys - Explores the formation of SiGe nanostructuresfeaturing different methods of crystal growth such as molecular beam epitaxy and chemical vapour deposition
Chemistry of Semiconductors
Title | Chemistry of Semiconductors PDF eBook |
Author | Sergio Pizzini |
Publisher | Royal Society of Chemistry |
Pages | 330 |
Release | 2023-11-24 |
Genre | Technology & Engineering |
ISBN | 1837671370 |
Silicon, germanium, and compound semiconductors, among which silicon carbide, gallium arsenide and gallium nitride are the most representative examples, play a withstanding role in the world economy, since they were and still are the keys for the advancement of modern microelectronics and optoelectronics, with a wealth of sister technologies relevant for renewable energy solutions and advanced spectroscopy applications. This textbook will cover the synthesis, spectroscopic characterisation and optimisation of semiconductor materials, accounting for the most recent developments in the field of nanomaterials. It will be of great interest for scholars and instructors to have the chance to look at semiconductor science with a basic chemical approach. Homopolar semiconductors (silicon and germanium) are examined first, considering the role of these materials in modern microelectronics and in photovoltaics. Compound semiconductors (for example, carbides, arsenides, tellurides, nitrides) are also discussed in detail, considering that the chemistry of their preparation is even more critical and their role in photonic applications is strategic. Authored by a leading expert in the field, this easily accessible text is appropriate for advanced undergraduates and postgraduates studying materials science and technology.
Point Defects in Group IV Semiconductors
Title | Point Defects in Group IV Semiconductors PDF eBook |
Author | S. Pizzini |
Publisher | Materials Research Forum LLC |
Pages | 134 |
Release | 2017-04-05 |
Genre | Technology & Engineering |
ISBN | 1945291230 |
A self-consistent model of point defects requires a reliable connection with the experimentally deduced structural, spectroscopic and thermodynamic properties of the defect centres, to allow their unambiguous identification. This book focuses on the properties of defects in group IV semiconductors and seeks to clarify whether full knowledge of their chemical nature can account for several problems encountered in practice. It is shown how difficult the fulfilment of self-consistency conditions can be, even today, after more than four decades of dedicated research work, especially in the case of compound semiconductors, such as SiC, but also in the apparently simple cases of silicon and germanium. The reason for this is that the available microscopic models do not yet account for defect interactions in real solids.