Shared-Memory Parallelism Can be Simple, Fast, and Scalable

Shared-Memory Parallelism Can be Simple, Fast, and Scalable
Title Shared-Memory Parallelism Can be Simple, Fast, and Scalable PDF eBook
Author Julian Shun
Publisher Morgan & Claypool
Pages 500
Release 2017-06-01
Genre Computers
ISBN 1970001909

Download Shared-Memory Parallelism Can be Simple, Fast, and Scalable Book in PDF, Epub and Kindle

Parallelism is the key to achieving high performance in computing. However, writing efficient and scalable parallel programs is notoriously difficult, and often requires significant expertise. To address this challenge, it is crucial to provide programmers with high-level tools to enable them to develop solutions easily, and at the same time emphasize the theoretical and practical aspects of algorithm design to allow the solutions developed to run efficiently under many different settings. This thesis addresses this challenge using a three-pronged approach consisting of the design of shared-memory programming techniques, frameworks, and algorithms for important problems in computing. The thesis provides evidence that with appropriate programming techniques, frameworks, and algorithms, shared-memory programs can be simple, fast, and scalable, both in theory and in practice. The results developed in this thesis serve to ease the transition into the multicore era. The first part of this thesis introduces tools and techniques for deterministic parallel programming, including means for encapsulating nondeterminism via powerful commutative building blocks, as well as a novel framework for executing sequential iterative loops in parallel, which lead to deterministic parallel algorithms that are efficient both in theory and in practice. The second part of this thesis introduces Ligra, the first high-level shared memory framework for parallel graph traversal algorithms. The framework allows programmers to express graph traversal algorithms using very short and concise code, delivers performance competitive with that of highly-optimized code, and is up to orders of magnitude faster than existing systems designed for distributed memory. This part of the thesis also introduces Ligra+, which extends Ligra with graph compression techniques to reduce space usage and improve parallel performance at the same time, and is also the first graph processing system to support in-memory graph compression. The third and fourth parts of this thesis bridge the gap between theory and practice in parallel algorithm design by introducing the first algorithms for a variety of important problems on graphs and strings that are efficient both in theory and in practice. For example, the thesis develops the first linear-work and polylogarithmic-depth algorithms for suffix tree construction and graph connectivity that are also practical, as well as a work-efficient, polylogarithmic-depth, and cache-efficient shared-memory algorithm for triangle computations that achieves a 2–5x speedup over the best existing algorithms on 40 cores. This is a revised version of the thesis that won the 2015 ACM Doctoral Dissertation Award.

Principles of Distributed Systems

Principles of Distributed Systems
Title Principles of Distributed Systems PDF eBook
Author Chenyang Lu
Publisher Springer Science & Business Media
Pages 529
Release 2010-12-02
Genre Computers
ISBN 3642176526

Download Principles of Distributed Systems Book in PDF, Epub and Kindle

This book constitutes the refereed proceedings of the 14th International Conference on Principles of Distributed Systems, OPODIS 2010, held in Tozeur, Tunisia, in December 2010. The 32 full papers and 4 brief announcements presented were carefully reviewed and selected from 122 submissions. The papers are organized in topical sections on robots; randomization in distributed algorithms; brief announcements; graph algorithms; fault-tolerance; distributed programming; real-time; shared memory; and concurrency.

Euro-Par 2011 Parallel Processing

Euro-Par 2011 Parallel Processing
Title Euro-Par 2011 Parallel Processing PDF eBook
Author Emmanuel Jeannot
Publisher Springer
Pages 486
Release 2011-08-12
Genre Computers
ISBN 364223397X

Download Euro-Par 2011 Parallel Processing Book in PDF, Epub and Kindle

The two-volume set LNCS 6852/6853 constitutes the refereed proceedings of the 17th International Euro-Par Conference held in Bordeaux, France, in August/September 2011. The 81 revised full papers presented were carefully reviewed and selected from 271 submissions. The papers are organized in topical sections on support tools and environments; performance prediction and evaluation; scheduling and load-balancing; high-performance architectures and compilers; parallel and distributed data management; grid, cluster and cloud computing; peer to peer computing; distributed systems and algorithms; parallel and distributed programming; parallel numerical algorithms; multicore and manycore programming; theory and algorithms for parallel computation; high performance networks and mobile ubiquitous computing.

Parallel and High Performance Computing

Parallel and High Performance Computing
Title Parallel and High Performance Computing PDF eBook
Author Robert Robey
Publisher Simon and Schuster
Pages 702
Release 2021-08-24
Genre Computers
ISBN 1638350388

Download Parallel and High Performance Computing Book in PDF, Epub and Kindle

Parallel and High Performance Computing offers techniques guaranteed to boost your code’s effectiveness. Summary Complex calculations, like training deep learning models or running large-scale simulations, can take an extremely long time. Efficient parallel programming can save hours—or even days—of computing time. Parallel and High Performance Computing shows you how to deliver faster run-times, greater scalability, and increased energy efficiency to your programs by mastering parallel techniques for multicore processor and GPU hardware. About the technology Write fast, powerful, energy efficient programs that scale to tackle huge volumes of data. Using parallel programming, your code spreads data processing tasks across multiple CPUs for radically better performance. With a little help, you can create software that maximizes both speed and efficiency. About the book Parallel and High Performance Computing offers techniques guaranteed to boost your code’s effectiveness. You’ll learn to evaluate hardware architectures and work with industry standard tools such as OpenMP and MPI. You’ll master the data structures and algorithms best suited for high performance computing and learn techniques that save energy on handheld devices. You’ll even run a massive tsunami simulation across a bank of GPUs. What's inside Planning a new parallel project Understanding differences in CPU and GPU architecture Addressing underperforming kernels and loops Managing applications with batch scheduling About the reader For experienced programmers proficient with a high-performance computing language like C, C++, or Fortran. About the author Robert Robey works at Los Alamos National Laboratory and has been active in the field of parallel computing for over 30 years. Yuliana Zamora is currently a PhD student and Siebel Scholar at the University of Chicago, and has lectured on programming modern hardware at numerous national conferences. Table of Contents PART 1 INTRODUCTION TO PARALLEL COMPUTING 1 Why parallel computing? 2 Planning for parallelization 3 Performance limits and profiling 4 Data design and performance models 5 Parallel algorithms and patterns PART 2 CPU: THE PARALLEL WORKHORSE 6 Vectorization: FLOPs for free 7 OpenMP that performs 8 MPI: The parallel backbone PART 3 GPUS: BUILT TO ACCELERATE 9 GPU architectures and concepts 10 GPU programming model 11 Directive-based GPU programming 12 GPU languages: Getting down to basics 13 GPU profiling and tools PART 4 HIGH PERFORMANCE COMPUTING ECOSYSTEMS 14 Affinity: Truce with the kernel 15 Batch schedulers: Bringing order to chaos 16 File operations for a parallel world 17 Tools and resources for better code

Euro-Par 2015: Parallel Processing

Euro-Par 2015: Parallel Processing
Title Euro-Par 2015: Parallel Processing PDF eBook
Author Jesper Larsson Träff
Publisher Springer
Pages 717
Release 2015-07-24
Genre Computers
ISBN 3662480964

Download Euro-Par 2015: Parallel Processing Book in PDF, Epub and Kindle

This book constitutes the refereed proceedings of the 21st International Conference on Parallel and Distributed Computing, Euro-Par 2015, held in Vienna, Austria, in August 2015. The 51 revised full papers presented together with 2 invited papers were carefully reviewed and selected from 190 submissions. The papers are organized in the following topical sections: support tools and environments; performance modeling, prediction and evaluation; scheduling and load balancing; architecture and compilers; parallel and distributed data management; grid, cluster and cloud computing; distributed systems and algorithms; parallel and distributed programming, interfaces and languages; multi- and many-core programming; theory and algorithms for parallel computation; numerical methods and applications; and accelerator computing.

Parallel Programming in OpenMP

Parallel Programming in OpenMP
Title Parallel Programming in OpenMP PDF eBook
Author Rohit Chandra
Publisher Morgan Kaufmann
Pages 250
Release 2001
Genre Computers
ISBN 1558606718

Download Parallel Programming in OpenMP Book in PDF, Epub and Kindle

Software -- Programming Techniques.

Programming Multicore and Many-core Computing Systems

Programming Multicore and Many-core Computing Systems
Title Programming Multicore and Many-core Computing Systems PDF eBook
Author Sabri Pllana
Publisher John Wiley & Sons
Pages 522
Release 2017-01-23
Genre Computers
ISBN 1119331994

Download Programming Multicore and Many-core Computing Systems Book in PDF, Epub and Kindle

Programming multi-core and many-core computing systems Sabri Pllana, Linnaeus University, Sweden Fatos Xhafa, Technical University of Catalonia, Spain Provides state-of-the-art methods for programming multi-core and many-core systems The book comprises a selection of twenty two chapters covering: fundamental techniques and algorithms; programming approaches; methodologies and frameworks; scheduling and management; testing and evaluation methodologies; and case studies for programming multi-core and many-core systems. Program development for multi-core processors, especially for heterogeneous multi-core processors, is significantly more complex than for single-core processors. However, programmers have been traditionally trained for the development of sequential programs, and only a small percentage of them have experience with parallel programming. In the past, only a relatively small group of programmers interested in High Performance Computing (HPC) was concerned with the parallel programming issues, but the situation has changed dramatically with the appearance of multi-core processors on commonly used computing systems. It is expected that with the pervasiveness of multi-core processors, parallel programming will become mainstream. The pervasiveness of multi-core processors affects a large spectrum of systems, from embedded and general-purpose, to high-end computing systems. This book assists programmers in mastering the efficient programming of multi-core systems, which is of paramount importance for the software-intensive industry towards a more effective product-development cycle. Key features: Lessons, challenges, and roadmaps ahead. Contains real world examples and case studies. Helps programmers in mastering the efficient programming of multi-core and many-core systems. The book serves as a reference for a larger audience of practitioners, young researchers and graduate level students. A basic level of programming knowledge is required to use this book.