Self-adjoint Extensions in Quantum Mechanics
Title | Self-adjoint Extensions in Quantum Mechanics PDF eBook |
Author | D.M. Gitman |
Publisher | Springer Science & Business Media |
Pages | 523 |
Release | 2012-04-27 |
Genre | Science |
ISBN | 0817646620 |
This exposition is devoted to a consistent treatment of quantization problems, based on appealing to some nontrivial items of functional analysis concerning the theory of linear operators in Hilbert spaces. The authors begin by considering quantization problems in general, emphasizing the nontriviality of consistent operator construction by presenting paradoxes to the naive treatment. It then builds the necessary mathematical background following it by the theory of self-adjoint extensions. By considering several problems such as the one-dimensional Calogero problem, the Aharonov-Bohm problem, the problem of delta-like potentials and relativistic Coulomb problemIt then shows how quantization problems associated with correct definition of observables can be treated consistently for comparatively simple quantum-mechanical systems. In the end, related problems in quantum field theory are briefly introduced. This well-organized text is most suitable for students and post graduates interested in deepening their understanding of mathematical problems in quantum mechanics. However, scientists in mathematical and theoretical physics and mathematicians will also find it useful.
Unbounded Self-adjoint Operators on Hilbert Space
Title | Unbounded Self-adjoint Operators on Hilbert Space PDF eBook |
Author | Konrad Schmüdgen |
Publisher | Springer Science & Business Media |
Pages | 435 |
Release | 2012-07-09 |
Genre | Mathematics |
ISBN | 9400747535 |
The book is a graduate text on unbounded self-adjoint operators on Hilbert space and their spectral theory with the emphasis on applications in mathematical physics (especially, Schrödinger operators) and analysis (Dirichlet and Neumann Laplacians, Sturm-Liouville operators, Hamburger moment problem) . Among others, a number of advanced special topics are treated on a text book level accompanied by numerous illustrating examples and exercises. The main themes of the book are the following: - Spectral integrals and spectral decompositions of self-adjoint and normal operators - Perturbations of self-adjointness and of spectra of self-adjoint operators - Forms and operators - Self-adjoint extension theory :boundary triplets, Krein-Birman-Vishik theory of positive self-adjoint extension
II: Fourier Analysis, Self-Adjointness
Title | II: Fourier Analysis, Self-Adjointness PDF eBook |
Author | Michael Reed |
Publisher | Elsevier |
Pages | 388 |
Release | 1975 |
Genre | Mathematics |
ISBN | 9780125850025 |
Band 2.
Self-Adjoint Extension Schemes and Modern Applications to Quantum Hamiltonians
Title | Self-Adjoint Extension Schemes and Modern Applications to Quantum Hamiltonians PDF eBook |
Author | Matteo Gallone |
Publisher | Springer Nature |
Pages | 557 |
Release | 2023-04-04 |
Genre | Science |
ISBN | 303110885X |
This book introduces and discusses the self-adjoint extension problem for symmetric operators on Hilbert space. It presents the classical von Neumann and Krein–Vishik–Birman extension schemes both in their modern form and from a historical perspective, and provides a detailed analysis of a range of applications beyond the standard pedagogical examples (the latter are indexed in a final appendix for the reader’s convenience). Self-adjointness of operators on Hilbert space representing quantum observables, in particular quantum Hamiltonians, is required to ensure real-valued energy levels, unitary evolution and, more generally, a self-consistent theory. Physical heuristics often produce candidate Hamiltonians that are only symmetric: their extension to suitably larger domains of self-adjointness, when possible, amounts to declaring additional physical states the operator must act on in order to have a consistent physics, and distinct self-adjoint extensions describe different physics. Realising observables self-adjointly is the first fundamental problem of quantum-mechanical modelling. The discussed applications concern models of topical relevance in modern mathematical physics currently receiving new or renewed interest, in particular from the point of view of classifying self-adjoint realisations of certain Hamiltonians and studying their spectral and scattering properties. The analysis also addresses intermediate technical questions such as characterising the corresponding operator closures and adjoints. Applications include hydrogenoid Hamiltonians, Dirac–Coulomb Hamiltonians, models of geometric quantum confinement and transmission on degenerate Riemannian manifolds of Grushin type, and models of few-body quantum particles with zero-range interaction. Graduate students and non-expert readers will benefit from a preliminary mathematical chapter collecting all the necessary pre-requisites on symmetric and self-adjoint operators on Hilbert space (including the spectral theorem), and from a further appendix presenting the emergence from physical principles of the requirement of self-adjointness for observables in quantum mechanics.
Solvable Models in Quantum Mechanics
Title | Solvable Models in Quantum Mechanics PDF eBook |
Author | Sergio Albeverio |
Publisher | Springer Science & Business Media |
Pages | 458 |
Release | 2012-12-06 |
Genre | Science |
ISBN | 3642882013 |
Next to the harmonic oscillator and the Coulomb potential the class of two-body models with point interactions is the only one where complete solutions are available. All mathematical and physical quantities can be calculated explicitly which makes this field of research important also for more complicated and realistic models in quantum mechanics. The detailed results allow their implementation in numerical codes to analyse properties of alloys, impurities, crystals and other features in solid state quantum physics. This monograph presents in a systematic way the mathematical approach and unifies results obtained in recent years. The student with a sound background in mathematics will get a deeper understanding of Schrödinger Operators and will see many examples which may eventually be used with profit in courses on quantum mechanics and solid state physics. The book has textbook potential in mathematical physics and is suitable for additional reading in various fields of theoretical quantum physics.
Nonrelativistic Quantum Mechanics
Title | Nonrelativistic Quantum Mechanics PDF eBook |
Author | Anton Z. Capri |
Publisher | World Scientific |
Pages | 546 |
Release | 2002 |
Genre | Science |
ISBN | 9789810246518 |
The main unique feature of this book is its discussion of Hilbert space and rigged Hilbert space. Suitable for advanced undergraduate students as well as graduate students.
Classical and Quantum Physics
Title | Classical and Quantum Physics PDF eBook |
Author | G. Marmo |
Publisher | Springer Nature |
Pages | 388 |
Release | 2019-10-26 |
Genre | Science |
ISBN | 3030247481 |
This proceedings is based on the interdisciplinary workshop held in Madrid, 5-9 March 2018, dedicated to Alberto Ibort on his 60th birthday. Alberto has great and significantly contributed to many fields of mathematics and physics, always with highly original and innovative ideas.Most of Albertos’s scientific activity has been motivated by geometric ideas, concepts and tools that are deeply related to the framework of classical dynamics and quantum mechanics.Let us mention some of the fields of expertise of Alberto Ibort:Geometric Mechanics; Constrained Systems; Variational Principles; Multisymplectic structures for field theories; Super manifolds; Inverse problem for Bosonic and Fermionic systems; Quantum Groups, Integrable systems, BRST Symmetries; Implicit differential equations; Yang-Mills Theories; BiHamiltonian Systems; Topology Change and Quantum Boundary Conditions; Classical and Quantum Control; Orthogonal Polynomials; Quantum Field Theory and Noncommutative Spaces; Classical and Quantum Tomography; Quantum Mechanics on phase space; Wigner-Weyl formalism; Lie-Jordan Algebras, Classical and Quantum; Quantum-to-Classical transition; Contraction of Associative Algebras; contact geometry, among many others.In each contribution, one may find not only technical novelties but also completely new way of looking at the considered problems. Even an experienced reader, reading Alberto's contributions on his field of expertise, will find new perspectives on the considered topic.His enthusiasm is happily contagious, for this reason he has had, and still has, very bright students wishing to elaborate their PhD thesis under his guidance.What is more impressive, is the broad list of rather different topics on which he has contributed.