Selected Topics in the Geometrical Study of Differential Equations

Selected Topics in the Geometrical Study of Differential Equations
Title Selected Topics in the Geometrical Study of Differential Equations PDF eBook
Author Niky Kamran
Publisher American Mathematical Soc.
Pages 138
Release 2002-01-01
Genre Mathematics
ISBN 9780821889404

Download Selected Topics in the Geometrical Study of Differential Equations Book in PDF, Epub and Kindle

Geometrical Methods in the Theory of Ordinary Differential Equations

Geometrical Methods in the Theory of Ordinary Differential Equations
Title Geometrical Methods in the Theory of Ordinary Differential Equations PDF eBook
Author V.I. Arnold
Publisher Springer Science & Business Media
Pages 366
Release 2012-12-06
Genre Mathematics
ISBN 1461210372

Download Geometrical Methods in the Theory of Ordinary Differential Equations Book in PDF, Epub and Kindle

Since the first edition of this book, geometrical methods in the theory of ordinary differential equations have become very popular and some progress has been made partly with the help of computers. Much of this progress is represented in this revised, expanded edition, including such topics as the Feigenbaum universality of period doubling, the Zoladec solution, the Iljashenko proof, the Ecalle and Voronin theory, the Varchenko and Hovanski theorems, and the Neistadt theory. In the selection of material for this book, the author explains basic ideas and methods applicable to the study of differential equations. Special efforts were made to keep the basic ideas free from excessive technicalities. Thus the most fundamental questions are considered in great detail, while of the more special and difficult parts of the theory have the character of a survey. Consequently, the reader needs only a general mathematical knowledge to easily follow this text. It is directed to mathematicians, as well as all users of the theory of differential equations.

Selected Topics in the Geometrical Study of Differential Equations

Selected Topics in the Geometrical Study of Differential Equations
Title Selected Topics in the Geometrical Study of Differential Equations PDF eBook
Author
Publisher American Mathematical Soc.
Pages 135
Release
Genre
ISBN 0821826395

Download Selected Topics in the Geometrical Study of Differential Equations Book in PDF, Epub and Kindle

Nonlinear Dynamics and Chaos

Nonlinear Dynamics and Chaos
Title Nonlinear Dynamics and Chaos PDF eBook
Author Steven H. Strogatz
Publisher CRC Press
Pages 532
Release 2018-05-04
Genre Mathematics
ISBN 0429961111

Download Nonlinear Dynamics and Chaos Book in PDF, Epub and Kindle

This textbook is aimed at newcomers to nonlinear dynamics and chaos, especially students taking a first course in the subject. The presentation stresses analytical methods, concrete examples, and geometric intuition. The theory is developed systematically, starting with first-order differential equations and their bifurcations, followed by phase plane analysis, limit cycles and their bifurcations, and culminating with the Lorenz equations, chaos, iterated maps, period doubling, renormalization, fractals, and strange attractors.

Topological Quantum Computation

Topological Quantum Computation
Title Topological Quantum Computation PDF eBook
Author Zhenghan Wang
Publisher American Mathematical Soc.
Pages 134
Release 2010
Genre Computers
ISBN 0821849301

Download Topological Quantum Computation Book in PDF, Epub and Kindle

Topological quantum computation is a computational paradigm based on topological phases of matter, which are governed by topological quantum field theories. In this approach, information is stored in the lowest energy states of many-anyon systems and processed by braiding non-abelian anyons. The computational answer is accessed by bringing anyons together and observing the result. Besides its theoretical esthetic appeal, the practical merit of the topological approach lies in its error-minimizing hypothetical hardware: topological phases of matter are fault-avoiding or deaf to most local noises, and unitary gates are implemented with exponential accuracy. Experimental realizations are pursued in systems such as fractional quantum Hall liquids and topological insulators. This book expands on the author's CBMS lectures on knots and topological quantum computing and is intended as a primer for mathematically inclined graduate students. With an emphasis on introducing basic notions and current research, this book gives the first coherent account of the field, covering a wide range of topics: Temperley-Lieb-Jones theory, the quantum circuit model, ribbon fusion category theory, topological quantum field theory, anyon theory, additive approximation of the Jones polynomial, anyonic quantum computing models, and mathematical models of topological phases of matter.

Deformation Theory of Algebras and Their Diagrams

Deformation Theory of Algebras and Their Diagrams
Title Deformation Theory of Algebras and Their Diagrams PDF eBook
Author Martin Markl
Publisher American Mathematical Soc.
Pages 143
Release 2012
Genre Mathematics
ISBN 0821889796

Download Deformation Theory of Algebras and Their Diagrams Book in PDF, Epub and Kindle

This book brings together both the classical and current aspects of deformation theory. The presentation is mostly self-contained, assuming only basic knowledge of commutative algebra, homological algebra and category theory. In the interest of readability, some technically complicated proofs have been omitted when a suitable reference was available. The relation between the uniform continuity of algebraic maps and topologized tensor products is explained in detail, however, as this subject does not seem to be commonly known and the literature is scarce. The exposition begins by recalling Gerstenhaber's classical theory for associative algebras. The focus then shifts to a homotopy-invariant setup of Maurer-Cartan moduli spaces. As an application, Kontsevich's approach to deformation quantization of Poisson manifolds is reviewed. Then, after a brief introduction to operads, a strongly homotopy Lie algebra governing deformations of (diagrams of) algebras of a given type is described, followed by examples and generalizations.

The Mutually Beneficial Relationship of Graphs and Matrices

The Mutually Beneficial Relationship of Graphs and Matrices
Title The Mutually Beneficial Relationship of Graphs and Matrices PDF eBook
Author Richard A. Brualdi
Publisher American Mathematical Soc.
Pages 110
Release 2011-07-06
Genre Mathematics
ISBN 0821853155

Download The Mutually Beneficial Relationship of Graphs and Matrices Book in PDF, Epub and Kindle

Graphs and matrices enjoy a fascinating and mutually beneficial relationship. This interplay has benefited both graph theory and linear algebra. In one direction, knowledge about one of the graphs that can be associated with a matrix can be used to illuminate matrix properties and to get better information about the matrix. Examples include the use of digraphs to obtain strong results on diagonal dominance and eigenvalue inclusion regions and the use of the Rado-Hall theorem to deduce properties of special classes of matrices. Going the other way, linear algebraic properties of one of the matrices associated with a graph can be used to obtain useful combinatorial information about the graph. The adjacency matrix and the Laplacian matrix are two well-known matrices associated to a graph, and their eigenvalues encode important information about the graph. Another important linear algebraic invariant associated with a graph is the Colin de Verdiere number, which, for instance, characterizes certain topological properties of the graph. This book is not a comprehensive study of graphs and matrices. The particular content of the lectures was chosen for its accessibility, beauty, and current relevance, and for the possibility of enticing the audience to want to learn more.