Displacement-based Seismic Design of Structures
Title | Displacement-based Seismic Design of Structures PDF eBook |
Author | M. J. N. Priestley |
Publisher | Iuss Press |
Pages | 750 |
Release | 2007 |
Genre | Science |
ISBN |
Displacement-Based Seismic Design of Structures is a book primarily directed towards practicing structural designers who are interested in applying performance-based concepts to seismic design. Since much of the material presented in the book has not been published elsewhere, it will also be of considerable interest to researchers, and to graduate and upper-level undergraduate students of earthquake engineering who wish to develop a deeper understanding of how design can be used to control seismic response. The design philosophy is based on determination of the optimum structural strength to achieve a given performance limit state, related to a defined level of damage, under a specified level of seismic intensity. Emphasis is also placed on how this strength is distributed through the structure. This takes two forms: methods of structural analysis and capacity design. It is shown that equilibrium considerations frequently lead to a more advantageous distribution of strength than that resulting from stiffness considerations. Capacity design considerations have been re-examined, and new and more realistic design approaches are presented to insure against undesirable modes of inelastic deformation. The book considers a wide range of structural types, including separate chapters on frame buildings, wall buildings, dual wall/frame buildings, masonry buildings, timber structures, bridges, structures with isolation or added damping devices, and wharves. These are preceded by introductory chapters discussing conceptual problems with current force-based design, seismic input for displacement-based design, fundamentals of direct displacement-based design, and analytical tools appropriate for displacement-based design. The final two chapters adapt the principles of displacement-based seismic design to assessment of existing structures, and present the previously developed design information in the form of a draft building code. The text is illustrated by copious worked design examples (39 in all), and analysis aids are provided in the form of a CD containing three computer programs covering moment-curvature analysis (Cumbia), linear-element-based inelastic time-history analysis (Ruaumoko), and a general fibre-element dynamic analysis program (SeismoStruct). The design procedure developed in this book is based on a secant-stiffness (rather than initial stiffness) representation of structural response, using a level of damping equivalent to the combined effects of elastic and hysteretic damping. The approach has been fully verified by extensive inelastic time history analyses, which are extensively reported in the text. The design method is extremely simple to apply, and very successful in providing dependable and predictable seismic response. Authors Bios M.J.N.Priestley Nigel Priestley is Professor Emeritus of the University of California San Diego, and co-Director of the Centre of Research and Graduate Studies in Earthquake Engineering and Engineering Seismology (ROSE School), Istituto Universitario di Studi Superiori (IUSS), Pavia, Italy. He has published more than 450 papers, mainly on earthquake engineering, and received numerous awards for his research. He holds honorary doctorates from ETH, Zurich, and Cujo, Argentina. He is co-author of two previous seismic design books “Seismic Design of Concrete and Masonry Buildings” and “Seismic Design and Retrofit of Bridges”, that are considered standard texts on the subjects. G.M.Calvi Michele Calvi is Professor of the University of Pavia and Director of the Centre of Research and Graduate Studies in Earthquake Engineering and Engineering Seismology (ROSE School), Istituto Universitario di Studi Superiori (IUSS) of Pavia. He has published more than 200 papers and is co-author of the book “Seismic Design and Retrofit of Bridges”, that is considered a standard text on the subject, has been involved in important construction projects worldwide, such as the Rion Bridge in Greece and the upgrading of the Bolu Viaduct in Turkey, and is coordinating several international research projects. M.J.Kowalsky Mervyn Kowalsky is Associate Professor of Structural Engineering in the Department of Civil, Construction, and Environmental Engineering at North Carolina State University and a member of the faculty of the ROSE School. His research, which has largely focused on the seismic behaviour of structures, has been supported by the National Science Foundation, the North Carolina and Alaska Departments of Transportation, and several industrial organizations. He is a registered Professional Engineer in North Carolina and an active member of several national and international committees on Performance-Based Seismic Design.
Advanced Earthquake Engineering Analysis
Title | Advanced Earthquake Engineering Analysis PDF eBook |
Author | Alain Pecker |
Publisher | Springer Science & Business Media |
Pages | 218 |
Release | 2008-01-23 |
Genre | Science |
ISBN | 321174214X |
During the last decade, the state-of-the-art in Earthquake Engineering Design and Analysis has made significant steps towards a more rational analysis of structures. This book reviews the fundamentals of displacement based methods. Starting from engineering seismology and earthquake geotechnical engineering, it proceeds to focus on design, analysis and testing of structures with emphasis on buildings and bridges.
A Practical Course in Advanced Structural Design
Title | A Practical Course in Advanced Structural Design PDF eBook |
Author | Tim Huff |
Publisher | CRC Press |
Pages | 339 |
Release | 2021-03-31 |
Genre | Architecture |
ISBN | 1000367460 |
A Practical Course in Advanced Structural Design is written from the perspective of a practicing engineer, one with over 35 years of experience, now working in the academic world, who wishes to pass on lessons learned over the course of a structural engineering career. The book covers essential topics that will enable beginning structural engineers to gain an advanced understanding prior to entering the workforce, as well as topics which may receive little or no attention in a typical undergraduate curriculum. For example, many new structural engineers are faced with issues regarding estimating collapse loadings during earthquakes and establishing fatigue requirements for cyclic loading – but are typically not taught the underlying methodologies for a full understanding. Features: Advanced practice-oriented guidance on structural building and bridge design in a single volume. Detailed treatment of earthquake ground motion from multiple specifications (ASCE 7-16, ASCE 4-16, ASCE 43-05, AASHTO). Details of calculations for the advanced student as well as the practicing structural engineer. Practical example problems and numerous photographs from the author’s projects throughout. A Practical Course in Advanced Structural Design will serve as a useful text for graduate and upper-level undergraduate civil engineering students as well as practicing structural engineers.
ICCS20 - 20th International Conference on Composite Structures
Title | ICCS20 - 20th International Conference on Composite Structures PDF eBook |
Author | Nicholas Fantuzzi |
Publisher | Società Editrice Esculapio |
Pages | 352 |
Release | 2017-07-24 |
Genre | Technology & Engineering |
ISBN | 8893850419 |
Composite materials have aroused a great interest over the last few decades, as proven by the huge number of scientific papers and industrial progress. The increase in the use of composite structures in different engineering practices justify the present international meeting where researches from every part of the globe can share and discuss the recent advancements regarding the use of structural components within advanced applications such as buckling, vibrations, repair, reinforcements, concrete, composite laminated materials and more recent metamaterials. Studies about composite structures are truly multidisciplinary and the given contributions can help other researches and professional engineers in their own field. This Conference is suitable as a reference for engineers and scientists working in the professional field, in the industry and the academia and it gives the possibility to share recent advancements in different engineering practices to the outside world. This book aims to collect selected plenary and key-note lectures of this International Conference. For this reason, the establishment of this 20th edition of International Conference on Composite Structures has appeared appropriate to continue what has been begun during the previous editions. ICCS wants to be an occasion for many researchers from each part of the globe to meet and discuss about the recent advancements regarding the use of composite structures, sandwich panels, nanotechnology, bio-composites, delamination and fracture, experimental methods, manufacturing and other countless topics that have filled many sessions during this conference. As a proof of this event, which has taken place in Paris (France), selected plenary and key-note lectures have been collected in the present book.
Proceedings of the Indian Structural Steel Conference 2020 (Vol. 1)
Title | Proceedings of the Indian Structural Steel Conference 2020 (Vol. 1) PDF eBook |
Author | Mahendrakumar Madhavan |
Publisher | Springer Nature |
Pages | 780 |
Release | 2023-08-16 |
Genre | Technology & Engineering |
ISBN | 9811993904 |
This book comprises the select peer-reviewed proceedings of the Indian Structural Steel Conference (ISSC 2020). The topics cover state-of-the-art and state-of-the-practice in structural engineering, and latest research in structural modeling and design. Novel analytical, computational and experimental techniques, proposal of new structural systems, innovative methods for maintenance, rehabilitation, and monitoring of existing structures, and investigation of the properties of engineering materials as related to structural behavior are presented in the book. This book will be very useful for structural engineers, researchers, and consultants interested in sustainable materials and steel construction.
Seismic Design Methods for Steel Building Structures
Title | Seismic Design Methods for Steel Building Structures PDF eBook |
Author | George A. Papagiannopoulos |
Publisher | Springer Nature |
Pages | 519 |
Release | 2022-01-01 |
Genre | Science |
ISBN | 3030806871 |
The book, after two introductory chapters on seismic design principles and structural seismic analysis methods, proceeds with the detailed description of seismic design methods for steel building structures. These methods include all the well-known methods, like force-based or displacement-based methods, plus some other methods developed by the present authors or other authors that have reached a level of maturity and are applicable to a large class of steel building structures. For every method, detailed practical examples and supporting references are provided in order to illustrate the methods and demonstrate their merits. As a unique feature, the present book describes not just one, as it is the case with existing books on seismic design of steel structures, but various seismic design methods including application examples worked in detail. The book is a valuable source of information, not only for MS and PhD students, but also for researchers and practicing engineers engaged with the design of steel building structures.
Seismic Design, Assessment and Retrofitting of Concrete Buildings
Title | Seismic Design, Assessment and Retrofitting of Concrete Buildings PDF eBook |
Author | Michael N. Fardis |
Publisher | Springer Science & Business Media |
Pages | 757 |
Release | 2009-07-25 |
Genre | Technology & Engineering |
ISBN | 1402098421 |
Reflecting the historic first European seismic code, this professional book focuses on seismic design, assessment and retrofitting of concrete buildings, with thorough reference to, and application of, EN-Eurocode 8. Following the publication of EN-Eurocode 8 in 2004-05, 30 countries are now introducing this European standard for seismic design, for application in parallel with existing national standards (till March 2010) and exclusively after that. Eurocode 8 is also expected to influence standards in countries outside Europe, or at the least, to be applied there for important facilities. Owing to the increasing awareness of the threat posed by existing buildings substandard and deficient buildings and the lack of national or international standards for assessment and retrofitting, its impact in that field is expected to be major. Written by the lead person in the development of the EN-Eurocode 8, the present handbook explains the principles and rationale of seismic design according to modern codes and provides thorough guidance for the conceptual seismic design of concrete buildings and their foundations. It examines the experimental behaviour of concrete members under cyclic loading and modelling for design and analysis purposes; it develops the essentials of linear or nonlinear seismic analysis for the purposes of design, assessment and retrofitting (especially using Eurocode 8); and gives detailed guidance for modelling concrete buildings at the member and at the system level. Moreover, readers gain access to overviews of provisions of Eurocode 8, plus an understanding for them on the basis of the simple models of the element behaviour presented in the book. Also examined are the modern trends in performance- and displacement-based seismic assessment of existing buildings, comparing the relevant provisions of Eurocode 8 with those of new US prestandards, and details of the most common and popular seismic retrofitting techniques for concrete buildings and guidance for retrofitting strategies at the system level. Comprehensive walk-through examples of detailed design elucidate the application of Eurocode 8 to common situations in practical design. Examples and case studies of seismic assessment and retrofitting of a few real buildings are also presented. From the reviews: "This is a massive book that has no equal in the published literature, as far as the reviewer knows. It is dense and comprehensive and leaves nothing to chance. It is certainly taxing on the reader and the potential user, but without it, use of Eurocode 8 will be that much more difficult. In short, this is a must-read book for researchers and practitioners in Europe, and of use to readers outside of Europe too. This book will remain an indispensable backup to Eurocode 8 and its existing Designers’ Guide to EN 1998-1 and EN 1998-5 (published in 2005), for many years to come. Congratulations to the author for a very well planned scope and contents, and for a flawless execution of the plan". AMR S. ELNASHAI "The book is an impressive source of information to understand the response of reinforced concrete buildings under seismic loads with the ultimate goal of presenting and explaining the state of the art of seismic design. Underlying the contents of the book is the in-depth knowledge of the author in this field and in particular his extremely important contribution to the development of the European Design Standard EN 1998 - Eurocode 8: Design of structures for earthquake resistance. However, although Eurocode 8 is at the core of the book, many comparisons are made to other design practices, namely from the US and from Japan, thus enriching the contents and interest of the book". EDUARDO C. CARVALHO