Root Physiology: from Gene to Function
Title | Root Physiology: from Gene to Function PDF eBook |
Author | Hans Lambers |
Publisher | Springer Science & Business Media |
Pages | 298 |
Release | 2005-11-28 |
Genre | Nature |
ISBN | 9781402040986 |
"Reprinted from Plant and soil, volume 274 (2005)."
Root Physiology: from Gene to Function
Title | Root Physiology: from Gene to Function PDF eBook |
Author | Hans Lambers |
Publisher | Springer Science & Business Media |
Pages | 282 |
Release | 2006-02-03 |
Genre | Science |
ISBN | 1402040997 |
In the last decade, enormous progress has been made on the physiology of plant roots, including on a wide range of molecular aspects. Much of that progress has been captured in the chapters of this book. Breakthroughs have been made possible through integration of molecular and whole-plant aspects. The classical boundaries between physiology, biochemistry and molecular biology have vanished. There has been a strong focus on a limited number of model species, including Arabidopsis thaliana. That focus has allowed greater insight into the significance of specific genes for plant development and functioning. However, many species are very different from A. thaliana, in that they are mycorrhizal, develop a symbiosis with N2-fixing microsymbionts, or have other specialised root structures. Also, some have a much greater capacity to resist extreme environments, such as soil acidity, salinity, flooding or heavy-metal toxicities, due to specific adaptations. Research on species other than A. thaliana is therefore pivotal, to develop new knowledge in plant sciences in a comprehensive manner. This fundamental new knowledge can be the basis for important applications in, e.g., agriculture and plant conservation. Although significant progress has been made, much remains to be learnt. It is envisaged that discoveries made in the recent past will likely lead to major breakthroughs in the next decade.
Plant Respiration
Title | Plant Respiration PDF eBook |
Author | Hans Lambers |
Publisher | Springer Science & Business Media |
Pages | 265 |
Release | 2006-03-30 |
Genre | Science |
ISBN | 1402035896 |
Respiration in plants, as in all living organisms, is essential to provide metabolic energy and carbon skeletons for growth and maintenance. As such, respiration is an essential component of a plant’s carbon budget. Depending on species and environmental conditions, it consumes 25-75% of all the carbohydrates produced in photosynthesis – even more at extremely slow growth rates. Respiration in plants can also proceed in a manner that produces neither metabolic energy nor carbon skeletons, but heat. This type of respiration involves the cyanide-resistant, alternative oxidase; it is unique to plants, and resides in the mitochondria. The activity of this alternative pathway can be measured based on a difference in fractionation of oxygen isotopes between the cytochrome and the alternative oxidase. Heat production is important in some flowers to attract pollinators; however, the alternative oxidase also plays a major role in leaves and roots of most plants. A common thread throughout this volume is to link respiration, including alternative oxidase activity, to plant functioning in different environments.
Molecular Biology of the Cell
Title | Molecular Biology of the Cell PDF eBook |
Author | |
Publisher | |
Pages | 0 |
Release | 2002 |
Genre | Cells |
ISBN | 9780815332183 |
Intercellular Communication in Plants
Title | Intercellular Communication in Plants PDF eBook |
Author | Andrew J. Fleming |
Publisher | CRC Press |
Pages | 316 |
Release | 2005 |
Genre | Nature |
ISBN | 9780849323638 |
Intercellular Communication in Plants provides an overview of intercellular signaling systems, capitalizing on the results of contemporary molecular biology. Many biological phenomena are controlled by intercellular signaling systems, initiated by messenger molecules. For example, intercellular communication channels are thought to be associated with a plant's growth and dormancy development - an important adaptive strategy for the survival and regrowth of temperate perennials. This volume is directed at researchers and professionals in plant biochemistry, physiology, cell biology and molecular biology, in both the academic and industrial sectors.
Functional Biology of Plants
Title | Functional Biology of Plants PDF eBook |
Author | Martin J. Hodson |
Publisher | John Wiley & Sons |
Pages | 577 |
Release | 2012-04-26 |
Genre | Science |
ISBN | 1119945062 |
Functional Biology of Plants provides students and researchers with a clearly written, well structured whole plant physiology text. Early in the text, it provides essential information on molecular and cellular processes so that the reader can understand how they are integrated into the development and function of the plant at whole-plant level. Thus, this beautifully illustrated book, presents a modern, applied integration of whole plant and molecular approaches to the study of plants. It is divided into four parts: Part 1: Genes and Cells, looks at the origins of plants, cell structure, biochemical processes and genes and development. Part 2: The Functioning Plant, describes the structure and function of roots, stems, leaves, flowers and seed and fruit development. Part 3: Interactions and Adaptations, examines environmental and biotic stresses and how plants adapt and acclimatise to these conditions. Part 4: Future Directions, illustrates the great importance of plant research by looking at some well chosen, topical examples such as GM crops, biomass and bio-fuels, loss of plant biodiversity and the question of how to feed the planet. Throughout the book there are text boxes to illustrate particular aspects of how humans make use of plants, and a comprehensive glossary proves invaluable to those coming to the subject from other areas of life science.
Plant Mitochondria: From Genome to Function
Title | Plant Mitochondria: From Genome to Function PDF eBook |
Author | David Day |
Publisher | Springer Science & Business Media |
Pages | 347 |
Release | 2013-11-09 |
Genre | Science |
ISBN | 1402024002 |
Mitochondria in plants, as in other eukaryotes, play an essential role in the cell as the major producers of ATP via oxidative phosphorylation. However, mitochondria also play crucial roles in many other aspects of plant development and performance, and possess an array of unique properties which allow them to interact with the specialized features of plant cell metabolism. The two main themes running through the book are the interconnection between gene regulation and protein function, and the integration of mitochondria with other components of plant cells. The book begins with an overview of the dynamics of mitochondrial structure, morphology and inheritance. It then discusses the biogenesis of mitochondria, the regulation of gene expression, the mitochondrial genome and its interaction with the nucleus, and the targeting of proteins to the organelle. This is followed by a discussion of the contributions that mutations, involving mitochondrial proteins, have made to our understanding of the way the organelle interacts with the rest of the plant cell, and the new field of proteomics and the discovery of new functions. Also covered are the pathways of electron transport, with special attention to the non-phosphorylating bypasses, metabolite transport, and specialized mitochondrial metabolism. In the end, the impact of oxidative stress on mitochondria and the defense mechanisms, that are employed to allow survival, are discussed. This book is for the use of advanced undergraduates, graduates, postgraduates, and beginning researchers in the areas of molecular and cellular biology, integrative biology, biochemistry, bioenergetics, proteomics and plant and agricultural sciences.