Cooperative Control of Multi-Agent Systems
Title | Cooperative Control of Multi-Agent Systems PDF eBook |
Author | Jianan Wang |
Publisher | Academic Press |
Pages | 260 |
Release | 2020-03-25 |
Genre | Technology & Engineering |
ISBN | 0128204451 |
Cooperative Control of Multi-Agent Systems: An Optimal and Robust Perspective reports and encourages technology transfer in the field of cooperative control of multi-agent systems. The book deals with UGVs, UAVs, UUVs and spacecraft, and more. It presents an extended exposition of the authors' recent work on all aspects of multi-agent technology. Modelling and cooperative control of multi-agent systems are topics of great interest, across both academia (research and education) and industry (for real applications and end-users). Graduate students and researchers from a wide spectrum of specialties in electrical, mechanical or aerospace engineering fields will use this book as a key resource. - Helps shape the reader's understanding of optimal and robust cooperative control design techniques for multi-agent systems - Presents new theoretical control challenges and investigates unresolved/open problems - Explores future research trends in multi-agent systems - Offers a certain amount of analytical mathematics, practical numerical procedures, and actual implementations of some proposed approaches
Cooperative Control of Multi-Agent Systems
Title | Cooperative Control of Multi-Agent Systems PDF eBook |
Author | Frank L. Lewis |
Publisher | Springer Science & Business Media |
Pages | 315 |
Release | 2013-12-31 |
Genre | Technology & Engineering |
ISBN | 1447155742 |
Cooperative Control of Multi-Agent Systems extends optimal control and adaptive control design methods to multi-agent systems on communication graphs. It develops Riccati design techniques for general linear dynamics for cooperative state feedback design, cooperative observer design, and cooperative dynamic output feedback design. Both continuous-time and discrete-time dynamical multi-agent systems are treated. Optimal cooperative control is introduced and neural adaptive design techniques for multi-agent nonlinear systems with unknown dynamics, which are rarely treated in literature are developed. Results spanning systems with first-, second- and on up to general high-order nonlinear dynamics are presented. Each control methodology proposed is developed by rigorous proofs. All algorithms are justified by simulation examples. The text is self-contained and will serve as an excellent comprehensive source of information for researchers and graduate students working with multi-agent systems.
Cooperative Control of Multi-Agent Systems
Title | Cooperative Control of Multi-Agent Systems PDF eBook |
Author | Zhongkui Li |
Publisher | CRC Press |
Pages | 262 |
Release | 2017-12-19 |
Genre | Computers |
ISBN | 1466569972 |
Distributed controller design is generally a challenging task, especially for multi-agent systems with complex dynamics, due to the interconnected effect of the agent dynamics, the interaction graph among agents, and the cooperative control laws. Cooperative Control of Multi-Agent Systems: A Consensus Region Approach offers a systematic framework for designing distributed controllers for multi-agent systems with general linear agent dynamics, linear agent dynamics with uncertainties, and Lipschitz nonlinear agent dynamics. Beginning with an introduction to cooperative control and graph theory, this monograph: Explores the consensus control problem for continuous-time and discrete-time linear multi-agent systems Studies the H∞ and H2 consensus problems for linear multi-agent systems subject to external disturbances Designs distributed adaptive consensus protocols for continuous-time linear multi-agent systems Considers the distributed tracking control problem for linear multi-agent systems with a leader of nonzero control input Examines the distributed containment control problem for the case with multiple leaders Covers the robust cooperative control problem for multi-agent systems with linear nominal agent dynamics subject to heterogeneous matching uncertainties Discusses the global consensus problem for Lipschitz nonlinear multi-agent systems Cooperative Control of Multi-Agent Systems: A Consensus Region Approach provides a novel approach to designing distributed cooperative protocols for multi-agent systems with complex dynamics. The proposed consensus region decouples the design of the feedback gain matrices of the cooperative protocols from the communication graph and serves as a measure for the robustness of the protocols to variations of the communication graph. By exploiting the decoupling feature, adaptive cooperative protocols are presented that can be designed and implemented in a fully distributed fashion.
Robust Cooperative Control of Multi-Agent Systems
Title | Robust Cooperative Control of Multi-Agent Systems PDF eBook |
Author | Chunyan Wang |
Publisher | CRC Press |
Pages | 230 |
Release | 2021-05-18 |
Genre | Technology & Engineering |
ISBN | 100037663X |
This book presents a concise introduction to the latest advances in robust cooperative control design for multi-agent systems with input delay and external disturbances, especially from a prediction and observation perspective. The volume covers a wide range of applications, such as the trajectory tracking of quadrotors, formation flying of multiple unmanned aerial vehicles (UAVs) and fixed-time formation of ground vehicles. Robust cooperative control means that multi-agent systems are able to achieve specified control tasks while remaining robust in the face of both parametric and nonparametric model uncertainties. In addition, the authors cover a wide range of key issues in cooperative control, such as communication and input delays, parametric model uncertainties and external disturbances. Moving beyond the scope of existing works, a systematic prediction and observation approach to designing robust cooperative control laws is presented. About the Authors Chunyan Wang is an Associate Professor in the School of Aerospace Engineering at Beijing Institute of Technology, China. Zongyu Zuo is a full Professor with the School of Automation Science and Electrical Engineering, Beihang University, China. Jianan Wang is an Associate Professor in the School of Aerospace Engineering at Beijing Institute of Technology, China. Zhengtao Ding is a Professor in the Department of Electrical and Electronic Engineering at University of Manchester, U.K.
Cooperative Control Design
Title | Cooperative Control Design PDF eBook |
Author | He Bai |
Publisher | Springer Science & Business Media |
Pages | 217 |
Release | 2011-06-03 |
Genre | Technology & Engineering |
ISBN | 1461400147 |
Cooperative Control Design: A Systematic, Passivity-Based Approach discusses multi-agent coordination problems, including formation control, attitude coordination, and synchronization. The goal of the book is to introduce passivity as a design tool for multi-agent systems, to provide exemplary work using this tool, and to illustrate its advantages in designing robust cooperative control algorithms. The discussion begins with an introduction to passivity and demonstrates how passivity can be used as a design tool for motion coordination. Followed by the case of adaptive redesigns for reference velocity recovery while describing a basic design, a modified design and the parameter convergence problem. Formation control is presented as it relates to relative distance control and relative position control. The coverage is concluded with a comprehensive discussion of agreement and the synchronization problem with an example using attitude coordination.
Formation Control
Title | Formation Control PDF eBook |
Author | Hyo-Sung Ahn |
Publisher | Springer |
Pages | 368 |
Release | 2019-03-29 |
Genre | Technology & Engineering |
ISBN | 3030151875 |
This monograph introduces recent developments in formation control of distributed-agent systems. Eschewing the traditional concern with the dynamic characteristics of individual agents, the book proposes a treatment that studies the formation control problem in terms of interactions among agents including factors such as sensing topology, communication and actuation topologies, and computations. Keeping pace with recent technological advancements in control, communications, sensing and computation that have begun to bring the applications of distributed-systems theory out of the industrial sphere and into that of day-to-day life, this monograph provides distributed control algorithms for a group of agents that may behave together. Unlike traditional control laws that usually require measurements with respect to a global coordinate frame and communications between a centralized operation center and agents, this book provides control laws that require only relative measurements and communications between agents without interaction with a centralized operator. Since the control algorithms presented in this book do not require any global sensing and any information exchanges with a centralized operation center, they can be realized in a fully distributed way, which significantly reduces the operation and implementation costs of a group of agents. Formation Control will give both students and researchers interested in pursuing this field a good grounding on which to base their work.
Cooperative Control of Multi-agent Systems
Title | Cooperative Control of Multi-agent Systems PDF eBook |
Author | He Cai |
Publisher | Springer Nature |
Pages | 399 |
Release | 2022-05-31 |
Genre | Technology & Engineering |
ISBN | 3030983773 |
The main focus of this book is a pair of cooperative control problems: consensus and cooperative output regulation. Its emphasis is on complex multi-agent systems characterized by strong nonlinearity, large uncertainty, heterogeneity, external disturbances and jointly connected switching communication topologies. The cooperative output regulation problem is a generalization of the classical output regulation problem to multi-agent systems and it offers a general framework for handling a variety of cooperative control problems such as consensus, formation, tracking and disturbance rejection. The book strikes a balance between rigorous mathematical proof and engineering practicality. Every design method is systematically presented together with illustrative examples and all the designs are validated by computer simulation. The methods presented are applied to several practical problems, among them the leader-following consensus problem of multiple Euler–Lagrange systems, attitude synchronization of multiple rigid-body systems, and power regulation of microgrids. The book gives a detailed exposition of two approaches to the design of distributed control laws for complex multi-agent systems—the distributed-observer and distributed-internal-model approaches. Mastering both will enhance a reader’s ability to deal with a variety of complex real-world problems. Cooperative Control of Multi-agent Systems can be used as a textbook for graduate students in engineering, sciences, and mathematics, and can also serve as a reference book for practitioners and theorists in both industry and academia. Some knowledge of the fundamentals of linear algebra, calculus, and linear systems are needed to gain maximum benefit from this book. Advances in Industrial Control reports and encourages the transfer of technology in control engineering. The rapid development of control technology has an impact on all areas of the control discipline. The series offers an opportunity for researchers to present an extended exposition of new work in all aspects of industrial control.