Rectifiable Measures, Square Functions Involving Densities, and the Cauchy Transform

Rectifiable Measures, Square Functions Involving Densities, and the Cauchy Transform
Title Rectifiable Measures, Square Functions Involving Densities, and the Cauchy Transform PDF eBook
Author Xavier Tolsa
Publisher American Mathematical Soc.
Pages 142
Release 2017-01-18
Genre Mathematics
ISBN 1470422522

Download Rectifiable Measures, Square Functions Involving Densities, and the Cauchy Transform Book in PDF, Epub and Kindle

This monograph is devoted to the proof of two related results. The first one asserts that if is a Radon measure in satisfyingfor -a.e. , then is rectifiable. Since the converse implication is already known to hold, this yields the following characterization of rectifiable sets: a set with finite -dimensional Hausdorff measure is rectifiable if and only ifH^1x2EThe second result of the monograph deals with the relationship between the above square function in the complex plane and the Cauchy transform . Assuming that has linear growth, it is proved that is bounded in if and only iffor every square .

Rectifiability

Rectifiability
Title Rectifiability PDF eBook
Author Pertti Mattila
Publisher Cambridge University Press
Pages 181
Release 2023-01-12
Genre Mathematics
ISBN 1009288083

Download Rectifiability Book in PDF, Epub and Kindle

A broad survey of the theory of rectifiability and its deep connections to numerous different areas of mathematics.

Orthogonal and Symplectic $n$-level Densities

Orthogonal and Symplectic $n$-level Densities
Title Orthogonal and Symplectic $n$-level Densities PDF eBook
Author A. M. Mason
Publisher American Mathematical Soc.
Pages 106
Release 2018-02-23
Genre Mathematics
ISBN 1470426854

Download Orthogonal and Symplectic $n$-level Densities Book in PDF, Epub and Kindle

In this paper the authors apply to the zeros of families of -functions with orthogonal or symplectic symmetry the method that Conrey and Snaith (Correlations of eigenvalues and Riemann zeros, 2008) used to calculate the -correlation of the zeros of the Riemann zeta function. This method uses the Ratios Conjectures (Conrey, Farmer, and Zimbauer, 2008) for averages of ratios of zeta or -functions. Katz and Sarnak (Zeroes of zeta functions and symmetry, 1999) conjecture that the zero statistics of families of -functions have an underlying symmetry relating to one of the classical compact groups , and . Here the authors complete the work already done with (Conrey and Snaith, Correlations of eigenvalues and Riemann zeros, 2008) to show how new methods for calculating the -level densities of eigenangles of random orthogonal or symplectic matrices can be used to create explicit conjectures for the -level densities of zeros of -functions with orthogonal or symplectic symmetry, including all the lower order terms. They show how the method used here results in formulae that are easily modified when the test function used has a restricted range of support, and this will facilitate comparison with rigorous number theoretic -level density results.

Applications of Polyfold Theory I: The Polyfolds of Gromov-Witten Theory

Applications of Polyfold Theory I: The Polyfolds of Gromov-Witten Theory
Title Applications of Polyfold Theory I: The Polyfolds of Gromov-Witten Theory PDF eBook
Author H. Hofer
Publisher American Mathematical Soc.
Pages 230
Release 2017-07-13
Genre Mathematics
ISBN 1470422034

Download Applications of Polyfold Theory I: The Polyfolds of Gromov-Witten Theory Book in PDF, Epub and Kindle

In this paper the authors start with the construction of the symplectic field theory (SFT). As a general theory of symplectic invariants, SFT has been outlined in Introduction to symplectic field theory (2000), by Y. Eliashberg, A. Givental and H. Hofer who have predicted its formal properties. The actual construction of SFT is a hard analytical problem which will be overcome be means of the polyfold theory due to the present authors. The current paper addresses a significant amount of the arising issues and the general theory will be completed in part II of this paper. To illustrate the polyfold theory the authors use the results of the present paper to describe an alternative construction of the Gromov-Witten invariants for general compact symplectic manifolds.

Rationality Problem for Algebraic Tori

Rationality Problem for Algebraic Tori
Title Rationality Problem for Algebraic Tori PDF eBook
Author Akinari Hoshi
Publisher American Mathematical Soc.
Pages 228
Release 2017-07-13
Genre Mathematics
ISBN 1470424096

Download Rationality Problem for Algebraic Tori Book in PDF, Epub and Kindle

The authors give the complete stably rational classification of algebraic tori of dimensions and over a field . In particular, the stably rational classification of norm one tori whose Chevalley modules are of rank and is given. The authors show that there exist exactly (resp. , resp. ) stably rational (resp. not stably but retract rational, resp. not retract rational) algebraic tori of dimension , and there exist exactly (resp. , resp. ) stably rational (resp. not stably but retract rational, resp. not retract rational) algebraic tori of dimension . The authors make a procedure to compute a flabby resolution of a -lattice effectively by using the computer algebra system GAP. Some algorithms may determine whether the flabby class of a -lattice is invertible (resp. zero) or not. Using the algorithms, the suthors determine all the flabby and coflabby -lattices of rank up to and verify that they are stably permutation. The authors also show that the Krull-Schmidt theorem for -lattices holds when the rank , and fails when the rank is ...

Maximal Cohen-Macaulay Modules Over Non-Isolated Surface Singularities and Matrix Problems

Maximal Cohen-Macaulay Modules Over Non-Isolated Surface Singularities and Matrix Problems
Title Maximal Cohen-Macaulay Modules Over Non-Isolated Surface Singularities and Matrix Problems PDF eBook
Author Igor Burban
Publisher American Mathematical Soc.
Pages 134
Release 2017-07-13
Genre Mathematics
ISBN 1470425378

Download Maximal Cohen-Macaulay Modules Over Non-Isolated Surface Singularities and Matrix Problems Book in PDF, Epub and Kindle

In this article the authors develop a new method to deal with maximal Cohen–Macaulay modules over non–isolated surface singularities. In particular, they give a negative answer on an old question of Schreyer about surface singularities with only countably many indecomposable maximal Cohen–Macaulay modules. Next, the authors prove that the degenerate cusp singularities have tame Cohen–Macaulay representation type. The authors' approach is illustrated on the case of k as well as several other rings. This study of maximal Cohen–Macaulay modules over non–isolated singularities leads to a new class of problems of linear algebra, which the authors call representations of decorated bunches of chains. They prove that these matrix problems have tame representation type and describe the underlying canonical forms.

Special Values of the Hypergeometric Series

Special Values of the Hypergeometric Series
Title Special Values of the Hypergeometric Series PDF eBook
Author Akihito Ebisu
Publisher American Mathematical Soc.
Pages 108
Release 2017-07-13
Genre Mathematics
ISBN 1470425335

Download Special Values of the Hypergeometric Series Book in PDF, Epub and Kindle

In this paper, the author presents a new method for finding identities for hypergeoemtric series, such as the (Gauss) hypergeometric series, the generalized hypergeometric series and the Appell-Lauricella hypergeometric series. Furthermore, using this method, the author gets identities for the hypergeometric series and shows that values of at some points can be expressed in terms of gamma functions, together with certain elementary functions. The author tabulates the values of that can be obtained with this method and finds that this set includes almost all previously known values and many previously unknown values.