Recent Trends in Nonlinear Partial Differential Equations II

Recent Trends in Nonlinear Partial Differential Equations II
Title Recent Trends in Nonlinear Partial Differential Equations II PDF eBook
Author James Serrin
Publisher American Mathematical Soc.
Pages 354
Release 2013
Genre Mathematics
ISBN 0821898612

Download Recent Trends in Nonlinear Partial Differential Equations II Book in PDF, Epub and Kindle

This book is the second of two volumes which contain the proceedings of the Workshop on Nonlinear Partial Differential Equations, held from May 28-June 1, 2012, at the University of Perugia in honour of Patrizia Pucci's 60th birthday. The workshop brought together leading experts and researchers in nonlinear partial differential equations to promote research and to stimulate interactions among the participants.

Recent Trends in Nonlinear Partial Differential Equations I

Recent Trends in Nonlinear Partial Differential Equations I
Title Recent Trends in Nonlinear Partial Differential Equations I PDF eBook
Author James B. Serrin
Publisher American Mathematical Soc.
Pages 323
Release 2013-07-22
Genre Mathematics
ISBN 082188736X

Download Recent Trends in Nonlinear Partial Differential Equations I Book in PDF, Epub and Kindle

This book is the first of two volumes which contain the proceedings of the Workshop on Nonlinear Partial Differential Equations, held from May 28-June 1, 2012, at the University of Perugia in honor of Patrizia Pucci's 60th birthday. The workshop brought t

An Introduction to Nonlinear Partial Differential Equations

An Introduction to Nonlinear Partial Differential Equations
Title An Introduction to Nonlinear Partial Differential Equations PDF eBook
Author J. David Logan
Publisher John Wiley & Sons
Pages 416
Release 2008-04-11
Genre Mathematics
ISBN 0470225955

Download An Introduction to Nonlinear Partial Differential Equations Book in PDF, Epub and Kindle

Praise for the First Edition: "This book is well conceived and well written. The author has succeeded in producing a text on nonlinear PDEs that is not only quite readable but also accessible to students from diverse backgrounds." —SIAM Review A practical introduction to nonlinear PDEs and their real-world applications Now in a Second Edition, this popular book on nonlinear partial differential equations (PDEs) contains expanded coverage on the central topics of applied mathematics in an elementary, highly readable format and is accessible to students and researchers in the field of pure and applied mathematics. This book provides a new focus on the increasing use of mathematical applications in the life sciences, while also addressing key topics such as linear PDEs, first-order nonlinear PDEs, classical and weak solutions, shocks, hyperbolic systems, nonlinear diffusion, and elliptic equations. Unlike comparable books that typically only use formal proofs and theory to demonstrate results, An Introduction to Nonlinear Partial Differential Equations, Second Edition takes a more practical approach to nonlinear PDEs by emphasizing how the results are used, why they are important, and how they are applied to real problems. The intertwining relationship between mathematics and physical phenomena is discovered using detailed examples of applications across various areas such as biology, combustion, traffic flow, heat transfer, fluid mechanics, quantum mechanics, and the chemical reactor theory. New features of the Second Edition also include: Additional intermediate-level exercises that facilitate the development of advanced problem-solving skills New applications in the biological sciences, including age-structure, pattern formation, and the propagation of diseases An expanded bibliography that facilitates further investigation into specialized topics With individual, self-contained chapters and a broad scope of coverage that offers instructors the flexibility to design courses to meet specific objectives, An Introduction to Nonlinear Partial Differential Equations, Second Edition is an ideal text for applied mathematics courses at the upper-undergraduate and graduate levels. It also serves as a valuable resource for researchers and professionals in the fields of mathematics, biology, engineering, and physics who would like to further their knowledge of PDEs.

Partial Differential Equations III

Partial Differential Equations III
Title Partial Differential Equations III PDF eBook
Author Michael E. Taylor
Publisher Springer Science & Business Media
Pages 734
Release 2010-11-02
Genre Mathematics
ISBN 1441970495

Download Partial Differential Equations III Book in PDF, Epub and Kindle

The third of three volumes on partial differential equations, this is devoted to nonlinear PDE. It treats a number of equations of classical continuum mechanics, including relativistic versions, as well as various equations arising in differential geometry, such as in the study of minimal surfaces, isometric imbedding, conformal deformation, harmonic maps, and prescribed Gauss curvature. In addition, some nonlinear diffusion problems are studied. It also introduces such analytical tools as the theory of L Sobolev spaces, H lder spaces, Hardy spaces, and Morrey spaces, and also a development of Calderon-Zygmund theory and paradifferential operator calculus. The book is aimed at graduate students in mathematics, and at professional mathematicians with an interest in partial differential equations, mathematical physics, differential geometry, harmonic analysis and complex analysis

New Tools for Nonlinear PDEs and Application

New Tools for Nonlinear PDEs and Application
Title New Tools for Nonlinear PDEs and Application PDF eBook
Author Marcello D'Abbicco
Publisher Springer
Pages 392
Release 2019-05-07
Genre Mathematics
ISBN 3030109372

Download New Tools for Nonlinear PDEs and Application Book in PDF, Epub and Kindle

This book features a collection of papers devoted to recent results in nonlinear partial differential equations and applications. It presents an excellent source of information on the state-of-the-art, new methods, and trends in this topic and related areas. Most of the contributors presented their work during the sessions "Recent progress in evolution equations" and "Nonlinear PDEs" at the 12th ISAAC congress held in 2017 in Växjö, Sweden. Even if inspired by this event, this book is not merely a collection of proceedings, but a stand-alone project gathering original contributions from active researchers on the latest trends in nonlinear evolution PDEs.

Harmonic Analysis and Partial Differential Equations

Harmonic Analysis and Partial Differential Equations
Title Harmonic Analysis and Partial Differential Equations PDF eBook
Author Patricio Cifuentes
Publisher American Mathematical Soc.
Pages 190
Release 2013-12-06
Genre Mathematics
ISBN 0821894331

Download Harmonic Analysis and Partial Differential Equations Book in PDF, Epub and Kindle

This volume contains the Proceedings of the 9th International Conference on Harmonic Analysis and Partial Differential Equations, held June 11-15, 2012, in El Escorial, Madrid, Spain. Included in this volume is the written version of the mini-course given by Jonathan Bennett on Aspects of Multilinear Harmonic Analysis Related to Transversality. Also included, among other papers, is a paper by Emmanouil Milakis, Jill Pipher, and Tatiana Toro, which reflects and extends the ideas presented in the mini-course on Analysis on Non-smooth Domains delivered at the conference by Tatiana Toro. The topics of the contributed lectures cover a wide range of the field of Harmonic Analysis and Partial Differential Equations and illustrate the fruitful interplay between the two subfields.

Numerical Methods for Nonlinear Partial Differential Equations

Numerical Methods for Nonlinear Partial Differential Equations
Title Numerical Methods for Nonlinear Partial Differential Equations PDF eBook
Author Sören Bartels
Publisher Springer
Pages 394
Release 2015-01-19
Genre Mathematics
ISBN 3319137972

Download Numerical Methods for Nonlinear Partial Differential Equations Book in PDF, Epub and Kindle

The description of many interesting phenomena in science and engineering leads to infinite-dimensional minimization or evolution problems that define nonlinear partial differential equations. While the development and analysis of numerical methods for linear partial differential equations is nearly complete, only few results are available in the case of nonlinear equations. This monograph devises numerical methods for nonlinear model problems arising in the mathematical description of phase transitions, large bending problems, image processing, and inelastic material behavior. For each of these problems the underlying mathematical model is discussed, the essential analytical properties are explained, and the proposed numerical method is rigorously analyzed. The practicality of the algorithms is illustrated by means of short implementations.