Recent Progress in Function Theory and Operator Theory

Recent Progress in Function Theory and Operator Theory
Title Recent Progress in Function Theory and Operator Theory PDF eBook
Author Alberto A. Condori
Publisher American Mathematical Society
Pages 226
Release 2024-04-30
Genre Mathematics
ISBN 1470472465

Download Recent Progress in Function Theory and Operator Theory Book in PDF, Epub and Kindle

This volume contains the proceedings of the AMS Special Session on Recent Progress in Function Theory and Operator Theory, held virtually on April 6, 2022. Function theory is a classical subject that examines the properties of individual elements in a function space, while operator theory usually deals with concrete operators acting on such spaces or other structured collections of functions. These topics occupy a central position in analysis, with important connections to partial differential equations, spectral theory, approximation theory, and several complex variables. With the aid of certain canonical representations or “models”, the study of general operators can often be reduced to that of the operator of multiplication by one or several independent variables, acting on spaces of analytic functions or compressions of this operator to co-invariant subspaces. In this way, a detailed understanding of operators becomes connected with natural questions concerning analytic functions, such as zero sets, constructions of functions constrained by norms or interpolation, multiplicative structures granted by factorizations in spaces of analytic functions, and so forth. In many cases, non-obvious problems initially motivated by operator-theoretic considerations turn out to be interesting on their own, leading to unexpected challenges in function theory. The research papers in this volume deal with the interplay between function theory and operator theory and the way in which they influence each other.

Lectures on Analytic Function Spaces and their Applications

Lectures on Analytic Function Spaces and their Applications
Title Lectures on Analytic Function Spaces and their Applications PDF eBook
Author Javad Mashreghi
Publisher Springer Nature
Pages 426
Release 2023-11-14
Genre Mathematics
ISBN 3031335724

Download Lectures on Analytic Function Spaces and their Applications Book in PDF, Epub and Kindle

The focus program on Analytic Function Spaces and their Applications took place at Fields Institute from July 1st to December 31st, 2021. Hilbert spaces of analytic functions form one of the pillars of complex analysis. These spaces have a rich structure and for more than a century have been studied by many prominent mathematicians. They have essential applications in other fields of mathematics and engineering. The most important Hilbert space of analytic functions is the Hardy class H2. However, its close cousins—the Bergman space A2, the Dirichlet space D, the model subspaces Kt, and the de Branges-Rovnyak spaces H(b)—have also garnered attention in recent decades. Leading experts on function spaces gathered and discussed new achievements and future venues of research on analytic function spaces, their operators, and their applications in other domains. With over 250 hours of lectures by prominent mathematicians, the program spanned a wide variety of topics. More explicitly, there were courses and workshops on Interpolation and Sampling, Riesz Bases, Frames and Signal Processing, Bounded Mean Oscillation, de Branges-Rovnyak Spaces, Blaschke Products and Inner Functions, and Convergence of Scattering Data and Non-linear Fourier Transform, among others. At the end of each week, there was a high-profile colloquium talk on the current topic. The program also contained two advanced courses on Schramm Loewner Evolution and Lattice Models and Reproducing Kernel Hilbert Space of Analytic Functions. This volume features the courses given on Hardy Spaces, Dirichlet Spaces, Bergman Spaces, Model Spaces, Operators on Function Spaces, Truncated Toeplitz Operators, Semigroups of weighted composition operators on spaces of holomorphic functions, the Corona Problem, Non-commutative Function Theory, and Drury-Arveson Space. This volume is a valuable resource for researchers interested in analytic function spaces.

Catherine Beneteau, Alberto A. Condori, Constanze Liaw, William T. Ross, and Alan A. Sola

Catherine Beneteau, Alberto A. Condori, Constanze Liaw, William T. Ross, and Alan A. Sola
Title Catherine Beneteau, Alberto A. Condori, Constanze Liaw, William T. Ross, and Alan A. Sola PDF eBook
Author Catherine Bénéteau:
Publisher American Mathematical Soc.
Pages 230
Release 2016-12-22
Genre Mathematics
ISBN 1470423057

Download Catherine Beneteau, Alberto A. Condori, Constanze Liaw, William T. Ross, and Alan A. Sola Book in PDF, Epub and Kindle

This volume contains the Proceedings of the Conference on Completeness Problems, Carleson Measures, and Spaces of Analytic Functions, held from June 29–July 3, 2015, at the Institut Mittag-Leffler, Djursholm, Sweden. The conference brought together experienced researchers and promising young mathematicians from many countries to discuss recent progress made in function theory, model spaces, completeness problems, and Carleson measures. This volume contains articles covering cutting-edge research questions, as well as longer survey papers and a report on the problem session that contains a collection of attractive open problems in complex and harmonic analysis.

Operator Theory and Harmonic Analysis

Operator Theory and Harmonic Analysis
Title Operator Theory and Harmonic Analysis PDF eBook
Author Alexey N. Karapetyants
Publisher Springer Nature
Pages 585
Release 2021-09-27
Genre Mathematics
ISBN 3030774937

Download Operator Theory and Harmonic Analysis Book in PDF, Epub and Kindle

This volume is part of the collaboration agreement between Springer and the ISAAC society. This is the first in the two-volume series originating from the 2020 activities within the international scientific conference "Modern Methods, Problems and Applications of Operator Theory and Harmonic Analysis" (OTHA), Southern Federal University in Rostov-on-Don, Russia. This volume is focused on general harmonic analysis and its numerous applications. The two volumes cover new trends and advances in several very important fields of mathematics, developed intensively over the last decade. The relevance of this topic is related to the study of complex multiparameter objects required when considering operators and objects with variable parameters.

Modern Methods in Operator Theory and Harmonic Analysis

Modern Methods in Operator Theory and Harmonic Analysis
Title Modern Methods in Operator Theory and Harmonic Analysis PDF eBook
Author Alexey Karapetyants
Publisher Springer Nature
Pages 474
Release 2019-08-28
Genre Mathematics
ISBN 3030267482

Download Modern Methods in Operator Theory and Harmonic Analysis Book in PDF, Epub and Kindle

This proceedings volume gathers selected, peer-reviewed papers from the "Modern Methods, Problems and Applications of Operator Theory and Harmonic Analysis VIII" (OTHA 2018) conference, which was held in Rostov-on-Don, Russia, in April 2018. The book covers a diverse range of topics in advanced mathematics, including harmonic analysis, functional analysis, operator theory, function theory, differential equations and fractional analysis – all fields that have been intensively developed in recent decades. Direct and inverse problems arising in mathematical physics are studied and new methods for solving them are presented. Complex multiparameter objects that require the involvement of operators with variable parameters and functional spaces, with fractional and even variable exponents, make these approaches all the more relevant. Given its scope, the book will especially benefit researchers with an interest in new trends in harmonic analysis and operator theory, though it will also appeal to graduate students seeking new and intriguing topics for further investigation.

Problems and Recent Methods in Operator Theory

Problems and Recent Methods in Operator Theory
Title Problems and Recent Methods in Operator Theory PDF eBook
Author Fernanda Botelho
Publisher American Mathematical Soc.
Pages 250
Release 2017-04-18
Genre Mathematics
ISBN 1470427729

Download Problems and Recent Methods in Operator Theory Book in PDF, Epub and Kindle

This volume contains the proceedings of the Workshop on Problems and Recent Methods in Operator Theory, held at the University of Memphis, Memphis, TN, from October 15–16, 2015 and the AMS Special Session on Advances in Operator Theory and Applications, in Memory of James Jamison, held at the University of Memphis, Memphis, TN, from October 17–18, 2015. Operator theory is at the root of several branches of mathematics and offers a broad range of challenging and interesting research problems. It also provides powerful tools for the development of other areas of science including quantum theory, physics and mechanics. Isometries have applications in solid-state physics. Hermitian operators play an integral role in quantum mechanics very much due to their “nice” spectral properties. These powerful connections demonstrate the impact of operator theory in various branches of science. The articles in this volume address recent problems and research advances in operator theory. Highlighted topics include spectral, structural and geometric properties of special types of operators on Banach spaces, with emphasis on isometries, weighted composition operators, multi-circular projections on function spaces, as well as vector valued function spaces and spaces of analytic functions. This volume gives a succinct overview of state-of-the-art techniques from operator theory as well as applications to classical problems and long-standing open questions.

Operator Theory in Function Spaces

Operator Theory in Function Spaces
Title Operator Theory in Function Spaces PDF eBook
Author Kehe Zhu
Publisher American Mathematical Soc.
Pages 368
Release 2007
Genre Mathematics
ISBN 0821839659

Download Operator Theory in Function Spaces Book in PDF, Epub and Kindle

This book covers Toeplitz operators, Hankel operators, and composition operators on both the Bergman space and the Hardy space. The setting is the unit disk and the main emphasis is on size estimates of these operators: boundedness, compactness, and membership in the Schatten classes. Most results concern the relationship between operator-theoretic properties of these operators and function-theoretic properties of the inducing symbols. Thus a good portion of the book is devoted to the study of analytic function spaces such as the Bloch space, Besov spaces, and BMOA, whose elements are to be used as symbols to induce the operators we study. The book is intended for both research mathematicians and graduate students in complex analysis and operator theory. The prerequisites are minimal; a graduate course in each of real analysis, complex analysis, and functional analysis should sufficiently prepare the reader for the book. Exercises and bibliographical notes are provided at the end of each chapter. These notes will point the reader to additional results and problems. Kehe Zhu is a professor of mathematics at the State University of New York at Albany. His previous books include Theory of Bergman Spaces (Springer, 2000, with H. Hedenmalm and B. Korenblum) and Spaces of Holomorphic Functions in the Unit Ball (Springer, 2005). His current research interests are holomorphic function spaces and operators acting on them.