Recent Developments in Algebraic Topology

Recent Developments in Algebraic Topology
Title Recent Developments in Algebraic Topology PDF eBook
Author Samuel Gitler
Publisher American Mathematical Soc.
Pages 210
Release 2006
Genre Mathematics
ISBN 0821836765

Download Recent Developments in Algebraic Topology Book in PDF, Epub and Kindle

This book is an excellent illustration of the versatility of Algebraic Topology interacting with other areas in Mathematics and Physics. Topics discussed in this volume range from classical Differential Topology and Homotopy Theory (Kervaire invariant one problem) to more recent lines of research such as Topological Quantum Field Theory (string theory). Likewise, alternative viewpoints on classical problems in Global Analysis and Dynamical Systems are developed (a spectral sequence approach to normal form theory). This collection of papers is based on talks at the conference on the occasion of Sam Gitler's 70th birthday (December, 2003). The variety of topics covered in this book reflects the many areas where Sam Gitler's contributions have had an impact.

Current Developments in Algebraic Geometry

Current Developments in Algebraic Geometry
Title Current Developments in Algebraic Geometry PDF eBook
Author Lucia Caporaso
Publisher Cambridge University Press
Pages 437
Release 2012-03-19
Genre Mathematics
ISBN 052176825X

Download Current Developments in Algebraic Geometry Book in PDF, Epub and Kindle

This volume, based on a workshop by the MSRI, offers an overview of the state of the art in many areas of algebraic geometry.

Algebraic Topology and Related Topics

Algebraic Topology and Related Topics
Title Algebraic Topology and Related Topics PDF eBook
Author Mahender Singh
Publisher Springer
Pages 318
Release 2019-02-02
Genre Mathematics
ISBN 9811357420

Download Algebraic Topology and Related Topics Book in PDF, Epub and Kindle

This book highlights the latest advances in algebraic topology, from homotopy theory, braid groups, configuration spaces and toric topology, to transformation groups and the adjoining area of knot theory. It consists of well-written original research papers and survey articles by subject experts, most of which were presented at the “7th East Asian Conference on Algebraic Topology” held at the Indian Institute of Science Education and Research (IISER), Mohali, Punjab, India, from December 1 to 6, 2017. Algebraic topology is a broad area of mathematics that has seen enormous developments over the past decade, and as such this book is a valuable resource for graduate students and researchers working in the field.

Algebraic Topology

Algebraic Topology
Title Algebraic Topology PDF eBook
Author C. R. F. Maunder
Publisher Courier Corporation
Pages 414
Release 1996-01-01
Genre Mathematics
ISBN 9780486691312

Download Algebraic Topology Book in PDF, Epub and Kindle

Based on lectures to advanced undergraduate and first-year graduate students, this is a thorough, sophisticated, and modern treatment of elementary algebraic topology, essentially from a homotopy theoretic viewpoint. Author C.R.F. Maunder provides examples and exercises; and notes and references at the end of each chapter trace the historical development of the subject.

A Concise Course in Algebraic Topology

A Concise Course in Algebraic Topology
Title A Concise Course in Algebraic Topology PDF eBook
Author J. P. May
Publisher University of Chicago Press
Pages 262
Release 1999-09
Genre Mathematics
ISBN 9780226511832

Download A Concise Course in Algebraic Topology Book in PDF, Epub and Kindle

Algebraic topology is a basic part of modern mathematics, and some knowledge of this area is indispensable for any advanced work relating to geometry, including topology itself, differential geometry, algebraic geometry, and Lie groups. This book provides a detailed treatment of algebraic topology both for teachers of the subject and for advanced graduate students in mathematics either specializing in this area or continuing on to other fields. J. Peter May's approach reflects the enormous internal developments within algebraic topology over the past several decades, most of which are largely unknown to mathematicians in other fields. But he also retains the classical presentations of various topics where appropriate. Most chapters end with problems that further explore and refine the concepts presented. The final four chapters provide sketches of substantial areas of algebraic topology that are normally omitted from introductory texts, and the book concludes with a list of suggested readings for those interested in delving further into the field.

Applications of Algebraic Topology

Applications of Algebraic Topology
Title Applications of Algebraic Topology PDF eBook
Author S. Lefschetz
Publisher Springer Science & Business Media
Pages 190
Release 2012-12-06
Genre Mathematics
ISBN 1468493671

Download Applications of Algebraic Topology Book in PDF, Epub and Kindle

This monograph is based, in part, upon lectures given in the Princeton School of Engineering and Applied Science. It presupposes mainly an elementary knowledge of linear algebra and of topology. In topology the limit is dimension two mainly in the latter chapters and questions of topological invariance are carefully avoided. From the technical viewpoint graphs is our only requirement. However, later, questions notably related to Kuratowski's classical theorem have demanded an easily provided treatment of 2-complexes and surfaces. January 1972 Solomon Lefschetz 4 INTRODUCTION The study of electrical networks rests upon preliminary theory of graphs. In the literature this theory has always been dealt with by special ad hoc methods. My purpose here is to show that actually this theory is nothing else than the first chapter of classical algebraic topology and may be very advantageously treated as such by the well known methods of that science. Part I of this volume covers the following ground: The first two chapters present, mainly in outline, the needed basic elements of linear algebra. In this part duality is dealt with somewhat more extensively. In Chapter III the merest elements of general topology are discussed. Graph theory proper is covered in Chapters IV and v, first structurally and then as algebra. Chapter VI discusses the applications to networks. In Chapters VII and VIII the elements of the theory of 2-dimensional complexes and surfaces are presented.

Algebraic Topology

Algebraic Topology
Title Algebraic Topology PDF eBook
Author Allen Hatcher
Publisher Cambridge University Press
Pages 572
Release 2002
Genre Mathematics
ISBN 9780521795401

Download Algebraic Topology Book in PDF, Epub and Kindle

An introductory textbook suitable for use in a course or for self-study, featuring broad coverage of the subject and a readable exposition, with many examples and exercises.