Random Walk in Random and Non-random Environments

Random Walk in Random and Non-random Environments
Title Random Walk in Random and Non-random Environments PDF eBook
Author P l R‚v‚sz
Publisher World Scientific
Pages 421
Release 2013
Genre Mathematics
ISBN 981444751X

Download Random Walk in Random and Non-random Environments Book in PDF, Epub and Kindle

The simplest mathematical model of the Brownian motion of physics is the simple, symmetric random walk. This book collects and compares current results OCo mostly strong theorems which describe the properties of a random walk. The modern problems of the limit theorems of probability theory are treated in the simple case of coin tossing. Taking advantage of this simplicity, the reader is familiarized with limit theorems (especially strong ones) without the burden of technical tools and difficulties. An easy way of considering the Wiener process is also given, through the study of the random walk.Since the first and second editions were published in 1990 and 2005, a number of new results have appeared in the literature. The first two editions contained many unsolved problems and conjectures which have since been settled; this third, revised and enlarged edition includes those new results. In this edition, a completely new part is included concerning Simple Random Walks on Graphs. Properties of random walks on several concrete graphs have been studied in the last decade. Some of the obtained results are also presented.

Random Walk In Random And Non-random Environments

Random Walk In Random And Non-random Environments
Title Random Walk In Random And Non-random Environments PDF eBook
Author Pal Revesz
Publisher World Scientific
Pages 348
Release 1990-09-28
Genre
ISBN 9814551899

Download Random Walk In Random And Non-random Environments Book in PDF, Epub and Kindle

This book collects and compares the results — mostly strong theorems which describe the properties of a simple symmetric random walk. The newest problems of limit theorems of probability theory are treated in the very simple case of coin tossing. Using the advantage of this simple situation, the reader can become familiar with limit theorems (especially strong ones) without suffering from technical tools and difficulties. A simple way to the study of the Wiener process is also given, through the study of the random walk. This book presents the most complete study of, and the most elementary way to the study of, the path properties of the Wiener process; and the most elementary way to the study of the strong theorems of probability theory.

Random Walk In Random And Non-random Environments (Second Edition)

Random Walk In Random And Non-random Environments (Second Edition)
Title Random Walk In Random And Non-random Environments (Second Edition) PDF eBook
Author Pal Revesz
Publisher World Scientific
Pages 397
Release 2005-08-11
Genre Mathematics
ISBN 9814480223

Download Random Walk In Random And Non-random Environments (Second Edition) Book in PDF, Epub and Kindle

The simplest mathematical model of the Brownian motion of physics is the simple, symmetric random walk. This book collects and compares current results — mostly strong theorems which describe the properties of a random walk. The modern problems of the limit theorems of probability theory are treated in the simple case of coin tossing. Taking advantage of this simplicity, the reader is familiarized with limit theorems (especially strong ones) without the burden of technical tools and difficulties. An easy way of considering the Wiener process is also given, through the study of the random walk.Since the first edition was published in 1990, a number of new results have appeared in the literature. The original edition contained many unsolved problems and conjectures which have since been settled; this second revised and enlarged edition includes those new results. Three new chapters have been added: frequently and rarely visited points, heavy points and long excursions. This new edition presents the most complete study of, and the most elementary way to study, the path properties of the Brownian motion.

Mathematical Statistical Physics

Mathematical Statistical Physics
Title Mathematical Statistical Physics PDF eBook
Author
Publisher Elsevier
Pages 849
Release 2006-06-27
Genre Science
ISBN 0080479235

Download Mathematical Statistical Physics Book in PDF, Epub and Kindle

The proceedings of the 2005 les Houches summer school on Mathematical Statistical Physics give and broad and clear overview on this fast developing area of interest to both physicists and mathematicians. - Introduction to a field of math with many interdisciplinary connections in physics, biology, and computer science - Roadmap to the next decade of mathematical statistical mechanics - Volume for reference years to come

Non-homogeneous Random Walks

Non-homogeneous Random Walks
Title Non-homogeneous Random Walks PDF eBook
Author Mikhail Menshikov
Publisher Cambridge University Press
Pages 385
Release 2016-12-22
Genre Mathematics
ISBN 1316867366

Download Non-homogeneous Random Walks Book in PDF, Epub and Kindle

Stochastic systems provide powerful abstract models for a variety of important real-life applications: for example, power supply, traffic flow, data transmission. They (and the real systems they model) are often subject to phase transitions, behaving in one way when a parameter is below a certain critical value, then switching behaviour as soon as that critical value is reached. In a real system, we do not necessarily have control over all the parameter values, so it is important to know how to find critical points and to understand system behaviour near these points. This book is a modern presentation of the 'semimartingale' or 'Lyapunov function' method applied to near-critical stochastic systems, exemplified by non-homogeneous random walks. Applications treat near-critical stochastic systems and range across modern probability theory from stochastic billiards models to interacting particle systems. Spatially non-homogeneous random walks are explored in depth, as they provide prototypical near-critical systems.

The Abel Prize 2013-2017

The Abel Prize 2013-2017
Title The Abel Prize 2013-2017 PDF eBook
Author Helge Holden
Publisher Springer
Pages 762
Release 2019-02-23
Genre Mathematics
ISBN 3319990284

Download The Abel Prize 2013-2017 Book in PDF, Epub and Kindle

The book presents the winners of the Abel Prize in mathematics for the period 2013–17: Pierre Deligne (2013); Yakov G. Sinai (2014); John Nash Jr. and Louis Nirenberg (2015); Sir Andrew Wiles (2016); and Yves Meyer (2017). The profiles feature autobiographical information as well as a scholarly description of each mathematician’s work. In addition, each profile contains a Curriculum Vitae, a complete bibliography, and the full citation from the prize committee. The book also includes photos for the period 2003–2017 showing many of the additional activities connected with the Abel Prize. As an added feature, video interviews with the Laureates as well as videos from the prize ceremony are provided at an accompanying website (http://extras.springer.com/). This book follows on The Abel Prize: 2003-2007. The First Five Years (Springer, 2010) and The Abel Prize 2008-2012 (Springer 2014), which profile the work of the previous Abel Prize winners.

Branching Random Walks

Branching Random Walks
Title Branching Random Walks PDF eBook
Author Zhan Shi
Publisher Springer
Pages 143
Release 2016-02-04
Genre Mathematics
ISBN 3319253727

Download Branching Random Walks Book in PDF, Epub and Kindle

Providing an elementary introduction to branching random walks, the main focus of these lecture notes is on the asymptotic properties of one-dimensional discrete-time supercritical branching random walks, and in particular, on extreme positions in each generation, as well as the evolution of these positions over time. Starting with the simple case of Galton-Watson trees, the text primarily concentrates on exploiting, in various contexts, the spinal structure of branching random walks. The notes end with some applications to biased random walks on trees.