Random Perturbations of Dynamical Systems

Random Perturbations of Dynamical Systems
Title Random Perturbations of Dynamical Systems PDF eBook
Author M. I. Freidlin
Publisher Springer Science & Business Media
Pages 334
Release 2012-12-06
Genre Mathematics
ISBN 1468401769

Download Random Perturbations of Dynamical Systems Book in PDF, Epub and Kindle

Asymptotical problems have always played an important role in probability theory. In classical probability theory dealing mainly with sequences of independent variables, theorems of the type of laws of large numbers, theorems of the type of the central limit theorem, and theorems on large deviations constitute a major part of all investigations. In recent years, when random processes have become the main subject of study, asymptotic investigations have continued to playa major role. We can say that in the theory of random processes such investigations play an even greater role than in classical probability theory, because it is apparently impossible to obtain simple exact formulas in problems connected with large classes of random processes. Asymptotical investigations in the theory of random processes include results of the types of both the laws of large numbers and the central limit theorem and, in the past decade, theorems on large deviations. Of course, all these problems have acquired new aspects and new interpretations in the theory of random processes.

Random Perturbations of Dynamical Systems

Random Perturbations of Dynamical Systems
Title Random Perturbations of Dynamical Systems PDF eBook
Author Yuri Kifer
Publisher Springer Science & Business Media
Pages 301
Release 2012-12-06
Genre Mathematics
ISBN 1461581818

Download Random Perturbations of Dynamical Systems Book in PDF, Epub and Kindle

Mathematicians often face the question to which extent mathematical models describe processes of the real world. These models are derived from experimental data, hence they describe real phenomena only approximately. Thus a mathematical approach must begin with choosing properties which are not very sensitive to small changes in the model, and so may be viewed as properties of the real process. In particular, this concerns real processes which can be described by means of ordinary differential equations. By this reason different notions of stability played an important role in the qualitative theory of ordinary differential equations commonly known nowdays as the theory of dynamical systems. Since physical processes are usually affected by an enormous number of small external fluctuations whose resulting action would be natural to consider as random, the stability of dynamical systems with respect to random perturbations comes into the picture. There are differences between the study of stability properties of single trajectories, i. e. , the Lyapunov stability, and the global stability of dynamical systems. The stochastic Lyapunov stability was dealt with in Hasminskii [Has]. In this book we are concerned mainly with questions of global stability in the presence of noise which can be described as recovering parameters of dynamical systems from the study of their random perturbations. The parameters which is possible to obtain in this way can be considered as stable under random perturbations, and so having physical sense. -1- Our set up is the following.

Random Perturbation Methods with Applications in Science and Engineering

Random Perturbation Methods with Applications in Science and Engineering
Title Random Perturbation Methods with Applications in Science and Engineering PDF eBook
Author Anatoli V. Skorokhod
Publisher Springer Science & Business Media
Pages 500
Release 2007-06-21
Genre Mathematics
ISBN 0387224467

Download Random Perturbation Methods with Applications in Science and Engineering Book in PDF, Epub and Kindle

This book develops methods for describing random dynamical systems, and it illustrats how the methods can be used in a variety of applications. Appeals to researchers and graduate students who require tools to investigate stochastic systems.

Random Dynamical Systems

Random Dynamical Systems
Title Random Dynamical Systems PDF eBook
Author Rabi Bhattacharya
Publisher Cambridge University Press
Pages 5
Release 2007-01-08
Genre Mathematics
ISBN 1139461621

Download Random Dynamical Systems Book in PDF, Epub and Kindle

This treatment provides an exposition of discrete time dynamic processes evolving over an infinite horizon. Chapter 1 reviews some mathematical results from the theory of deterministic dynamical systems, with particular emphasis on applications to economics. The theory of irreducible Markov processes, especially Markov chains, is surveyed in Chapter 2. Equilibrium and long run stability of a dynamical system in which the law of motion is subject to random perturbations is the central theme of Chapters 3-5. A unified account of relatively recent results, exploiting splitting and contractions, that have found applications in many contexts is presented in detail. Chapter 6 explains how a random dynamical system may emerge from a class of dynamic programming problems. With examples and exercises, readers are guided from basic theory to the frontier of applied mathematical research.

Random Dynamical Systems

Random Dynamical Systems
Title Random Dynamical Systems PDF eBook
Author Ludwig Arnold
Publisher Springer Science & Business Media
Pages 590
Release 2013-04-17
Genre Mathematics
ISBN 3662128780

Download Random Dynamical Systems Book in PDF, Epub and Kindle

The first systematic presentation of the theory of dynamical systems under the influence of randomness, this book includes products of random mappings as well as random and stochastic differential equations. The basic multiplicative ergodic theorem is presented, providing a random substitute for linear algebra. On its basis, many applications are detailed. Numerous instructive examples are treated analytically or numerically.

Smooth Ergodic Theory of Random Dynamical Systems

Smooth Ergodic Theory of Random Dynamical Systems
Title Smooth Ergodic Theory of Random Dynamical Systems PDF eBook
Author Pei-Dong Liu
Publisher Springer
Pages 233
Release 2006-11-14
Genre Mathematics
ISBN 3540492917

Download Smooth Ergodic Theory of Random Dynamical Systems Book in PDF, Epub and Kindle

This book studies ergodic-theoretic aspects of random dynam- ical systems, i.e. of deterministic systems with noise. It aims to present a systematic treatment of a series of recent results concerning invariant measures, entropy and Lyapunov exponents of such systems, and can be viewed as an update of Kifer's book. An entropy formula of Pesin's type occupies the central part. The introduction of relation numbers (ch.2) is original and most methods involved in the book are canonical in dynamical systems or measure theory. The book is intended for people interested in noise-perturbed dynam- ical systems, and can pave the way to further study of the subject. Reasonable knowledge of differential geometry, measure theory, ergodic theory, dynamical systems and preferably random processes is assumed.

Random Perturbations of Dynamical Systems

Random Perturbations of Dynamical Systems
Title Random Perturbations of Dynamical Systems PDF eBook
Author Mark I. Freidlin
Publisher Springer Science & Business Media
Pages 483
Release 2012-05-31
Genre Mathematics
ISBN 3642258476

Download Random Perturbations of Dynamical Systems Book in PDF, Epub and Kindle

Many notions and results presented in the previous editions of this volume have since become quite popular in applications, and many of them have been “rediscovered” in applied papers. In the present 3rd edition small changes were made to the chapters in which long-time behavior of the perturbed system is determined by large deviations. Most of these changes concern terminology. In particular, it is explained that the notion of sub-limiting distribution for a given initial point and a time scale is identical to the idea of metastability, that the stochastic resonance is a manifestation of metastability, and that the theory of this effect is a part of the large deviation theory. The reader will also find new comments on the notion of quasi-potential that the authors introduced more than forty years ago, and new references to recent papers in which the proofs of some conjectures included in previous editions have been obtained. Apart from the above mentioned changes the main innovations in the 3rd edition concern the averaging principle. A new Section on deterministic perturbations of one-degree-of-freedom systems was added in Chapter 8. It is shown there that pure deterministic perturbations of an oscillator may lead to a stochastic, in a certain sense, long-time behavior of the system, if the corresponding Hamiltonian has saddle points. The usefulness of a joint consideration of classical theory of deterministic perturbations together with stochastic perturbations is illustrated in this section. Also a new Chapter 9 has been inserted in which deterministic and stochastic perturbations of systems with many degrees of freedom are considered. Because of the resonances, stochastic regularization in this case is even more important.