Mathematics of Classical and Quantum Physics
Title | Mathematics of Classical and Quantum Physics PDF eBook |
Author | Frederick W. Byron |
Publisher | Courier Corporation |
Pages | 674 |
Release | 2012-04-26 |
Genre | Science |
ISBN | 0486135063 |
Graduate-level text offers unified treatment of mathematics applicable to many branches of physics. Theory of vector spaces, analytic function theory, theory of integral equations, group theory, and more. Many problems. Bibliography.
Quantum Mathematical Physics
Title | Quantum Mathematical Physics PDF eBook |
Author | Felix Finster |
Publisher | Birkhäuser |
Pages | 517 |
Release | 2016-02-24 |
Genre | Science |
ISBN | 331926902X |
Quantum physics has been highly successful for more than 90 years. Nevertheless, a rigorous construction of interacting quantum field theory is still missing. Moreover, it is still unclear how to combine quantum physics and general relativity in a unified physical theory. Attacking these challenging problems of contemporary physics requires highly advanced mathematical methods as well as radically new physical concepts. This book presents different physical ideas and mathematical approaches in this direction. It contains a carefully selected cross-section of lectures which took place in autumn 2014 at the sixth conference ``Quantum Mathematical Physics - A Bridge between Mathematics and Physics'' in Regensburg, Germany. In the tradition of the other proceedings covering this series of conferences, a special feature of this book is the exposition of a wide variety of approaches, with the intention to facilitate a comparison. The book is mainly addressed to mathematicians and physicists who are interested in fundamental questions of mathematical physics. It allows the reader to obtain a broad and up-to-date overview of a fascinating active research area.
Quantum Theory for Mathematicians
Title | Quantum Theory for Mathematicians PDF eBook |
Author | Brian C. Hall |
Publisher | Springer Science & Business Media |
Pages | 566 |
Release | 2013-06-19 |
Genre | Science |
ISBN | 1461471168 |
Although ideas from quantum physics play an important role in many parts of modern mathematics, there are few books about quantum mechanics aimed at mathematicians. This book introduces the main ideas of quantum mechanics in language familiar to mathematicians. Readers with little prior exposure to physics will enjoy the book's conversational tone as they delve into such topics as the Hilbert space approach to quantum theory; the Schrödinger equation in one space dimension; the Spectral Theorem for bounded and unbounded self-adjoint operators; the Stone–von Neumann Theorem; the Wentzel–Kramers–Brillouin approximation; the role of Lie groups and Lie algebras in quantum mechanics; and the path-integral approach to quantum mechanics. The numerous exercises at the end of each chapter make the book suitable for both graduate courses and independent study. Most of the text is accessible to graduate students in mathematics who have had a first course in real analysis, covering the basics of L2 spaces and Hilbert spaces. The final chapters introduce readers who are familiar with the theory of manifolds to more advanced topics, including geometric quantization.
Quantum Mechanics for Mathematicians
Title | Quantum Mechanics for Mathematicians PDF eBook |
Author | Leon Armenovich Takhtadzhi͡an |
Publisher | American Mathematical Soc. |
Pages | 410 |
Release | 2008 |
Genre | Mathematics |
ISBN | 0821846302 |
Presents a comprehensive treatment of quantum mechanics from a mathematics perspective. Including traditional topics, like classical mechanics, mathematical foundations of quantum mechanics, quantization, and the Schrodinger equation, this book gives a mathematical treatment of systems of identical particles with spin.
Mathematical Horizons for Quantum Physics
Title | Mathematical Horizons for Quantum Physics PDF eBook |
Author | Huzihiro Araki |
Publisher | World Scientific |
Pages | 221 |
Release | 2010 |
Genre | Science |
ISBN | 9814313327 |
Control of the molecular alignment or orientation by laser pulses / Arne Keller -- Quantum computing and devices : A short introduction / Zhigang Zhang, Viswanath Ramakrishna and Goong Chen -- Dynamics of mixed classical-quantum systems, geometric quantization and coherent states / Hans-Rudolf Jauslin and Dominique Sugny -- Quantum memories as open systems / Robert Alicki -- Two mathematical problems in quantum information theory / Alexander S. Holevo -- Dissipatively induced bipartite entanglement / Fabio Benatti -- Scattering in nonrelativistic quantum field theory / Jan Derezinski -- Mathematical theory of atoms and molecules / Volker Bach
Quantum Mechanics and Quantum Field Theory
Title | Quantum Mechanics and Quantum Field Theory PDF eBook |
Author | Jonathan Dimock |
Publisher | Cambridge University Press |
Pages | 239 |
Release | 2011-02-03 |
Genre | Science |
ISBN | 1139497480 |
Explaining the concepts of quantum mechanics and quantum field theory in a precise mathematical language, this textbook is an ideal introduction for graduate students in mathematics, helping to prepare them for further studies in quantum physics. The textbook covers topics that are central to quantum physics: non-relativistic quantum mechanics, quantum statistical mechanics, relativistic quantum mechanics and quantum field theory. There is also background material on analysis, classical mechanics, relativity and probability. Each topic is explored through a statement of basic principles followed by simple examples. Around 100 problems throughout the textbook help readers develop their understanding.
Physics and Mathematics of Quantum Many-Body Systems
Title | Physics and Mathematics of Quantum Many-Body Systems PDF eBook |
Author | Hal Tasaki |
Publisher | Springer Nature |
Pages | 534 |
Release | 2020-05-07 |
Genre | Technology & Engineering |
ISBN | 3030412652 |
This book is a self-contained advanced textbook on the mathematical-physical aspects of quantum many-body systems, which begins with a pedagogical presentation of the necessary background information before moving on to subjects of active research, including topological phases of matter. The book explores in detail selected topics in quantum spin systems and lattice electron systems, namely, long-range order and spontaneous symmetry breaking in the antiferromagnetic Heisenberg model in two or higher dimensions (Part I), Haldane phenomena in antiferromagnetic quantum spin chains and related topics in topological phases of quantum matter (Part II), and the origin of magnetism in various versions of the Hubbard model (Part III). Each of these topics represents certain nontrivial phenomena or features that are invariably encountered in a variety of quantum many-body systems, including quantum field theory, condensed matter systems, cold atoms, and artificial quantum systems designed for future quantum computers. The book’s main focus is on universal properties of quantum many-body systems. The book includes roughly 50 problems with detailed solutions. The reader only requires elementary linear algebra and calculus to comprehend the material and work through the problems. Given its scope and format, the book is suitable both for self-study and as a textbook for graduate or advanced undergraduate classes.