Quantum Groups, Tensor Categories, and Knot Invariants
Title | Quantum Groups, Tensor Categories, and Knot Invariants PDF eBook |
Author | Noah Joseph Snyder |
Publisher | |
Pages | 410 |
Release | 2009 |
Genre | |
ISBN |
Tensor Categories
Title | Tensor Categories PDF eBook |
Author | Pavel Etingof |
Publisher | American Mathematical Soc. |
Pages | 362 |
Release | 2016-08-05 |
Genre | Mathematics |
ISBN | 1470434415 |
Is there a vector space whose dimension is the golden ratio? Of course not—the golden ratio is not an integer! But this can happen for generalizations of vector spaces—objects of a tensor category. The theory of tensor categories is a relatively new field of mathematics that generalizes the theory of group representations. It has deep connections with many other fields, including representation theory, Hopf algebras, operator algebras, low-dimensional topology (in particular, knot theory), homotopy theory, quantum mechanics and field theory, quantum computation, theory of motives, etc. This book gives a systematic introduction to this theory and a review of its applications. While giving a detailed overview of general tensor categories, it focuses especially on the theory of finite tensor categories and fusion categories (in particular, braided and modular ones), and discusses the main results about them with proofs. In particular, it shows how the main properties of finite-dimensional Hopf algebras may be derived from the theory of tensor categories. Many important results are presented as a sequence of exercises, which makes the book valuable for students and suitable for graduate courses. Many applications, connections to other areas, additional results, and references are discussed at the end of each chapter.
Quantum Groups
Title | Quantum Groups PDF eBook |
Author | Christian Kassel |
Publisher | Springer Science & Business Media |
Pages | 540 |
Release | 2012-12-06 |
Genre | Mathematics |
ISBN | 1461207835 |
Here is an introduction to the theory of quantum groups with emphasis on the spectacular connections with knot theory and Drinfeld's recent fundamental contributions. It presents the quantum groups attached to SL2 as well as the basic concepts of the theory of Hopf algebras. Coverage also focuses on Hopf algebras that produce solutions of the Yang-Baxter equation and provides an account of Drinfeld's elegant treatment of the monodromy of the Knizhnik-Zamolodchikov equations.
Quantum Group Symmetry And Q-tensor Algebras
Title | Quantum Group Symmetry And Q-tensor Algebras PDF eBook |
Author | Lawrence C Biedenharn |
Publisher | World Scientific |
Pages | 305 |
Release | 1995-08-31 |
Genre | Science |
ISBN | 9814500135 |
Quantum groups are a generalization of the classical Lie groups and Lie algebras and provide a natural extension of the concept of symmetry fundamental to physics. This monograph is a survey of the major developments in quantum groups, using an original approach based on the fundamental concept of a tensor operator. Using this concept, properties of both the algebra and co-algebra are developed from a single uniform point of view, which is especially helpful for understanding the noncommuting co-ordinates of the quantum plane, which we interpret as elementary tensor operators. Representations of the q-deformed angular momentum group are discussed, including the case where q is a root of unity, and general results are obtained for all unitary quantum groups using the method of algebraic induction. Tensor operators are defined and discussed with examples, and a systematic treatment of the important (3j) series of operators is developed in detail. This book is a good reference for graduate students in physics and mathematics.
Hochschild Cohomology, Modular Tensor Categories, and Mapping Class Groups I
Title | Hochschild Cohomology, Modular Tensor Categories, and Mapping Class Groups I PDF eBook |
Author | Simon Lentner |
Publisher | Springer Nature |
Pages | 76 |
Release | 2023-07-25 |
Genre | Science |
ISBN | 9811946450 |
The book addresses a key question in topological field theory and logarithmic conformal field theory: In the case where the underlying modular category is not semisimple, topological field theory appears to suggest that mapping class groups do not only act on the spaces of chiral conformal blocks, which arise from the homomorphism functors in the category, but also act on the spaces that arise from the corresponding derived functors. It is natural to ask whether this is indeed the case. The book carefully approaches this question by first providing a detailed introduction to surfaces and their mapping class groups. Thereafter, it explains how representations of these groups are constructed in topological field theory, using an approach via nets and ribbon graphs. These tools are then used to show that the mapping class groups indeed act on the so-called derived block spaces. Toward the end, the book explains the relation to Hochschild cohomology of Hopf algebras and the modular group.
Quantum Groups
Title | Quantum Groups PDF eBook |
Author | Benjamin Enriquez |
Publisher | European Mathematical Society |
Pages | 148 |
Release | 2008 |
Genre | Mathematics |
ISBN | 9783037190470 |
The volume starts with a lecture course by P. Etingof on tensor categories (notes by D. Calaque). This course is an introduction to tensor categories, leading to topics of recent research such as realizability of fusion rings, Ocneanu rigidity, module categories, weak Hopf algebras, Morita theory for tensor categories, lifting theory, categorical dimensions, Frobenius-Perron dimensions, and the classification of tensor categories. The remainder of the book consists of three detailed expositions on associators and the Vassiliev invariants of knots, classical and quantum integrable systems and elliptic algebras, and the groups of algebra automorphisms of quantum groups. The preface puts the results presented in perspective. Directed at research mathematicians and theoretical physicists as well as graduate students, the volume gives an overview of the ongoing research in the domain of quantum groups, an important subject of current mathematical physics.
A Guide to Quantum Groups
Title | A Guide to Quantum Groups PDF eBook |
Author | Vyjayanthi Chari |
Publisher | Cambridge University Press |
Pages | 672 |
Release | 1995-07-27 |
Genre | Mathematics |
ISBN | 9780521558846 |
Since they first arose in the 1970s and early 1980s, quantum groups have proved to be of great interest to mathematicians and theoretical physicists. The theory of quantum groups is now well established as a fascinating chapter of representation theory, and has thrown new light on many different topics, notably low-dimensional topology and conformal field theory. The goal of this book is to give a comprehensive view of quantum groups and their applications. The authors build on a self-contained account of the foundations of the subject and go on to treat the more advanced aspects concisely and with detailed references to the literature. Thus this book can serve both as an introduction for the newcomer, and as a guide for the more experienced reader. All who have an interest in the subject will welcome this unique treatment of quantum groups.