Qualitative Estimates For Partial Differential Equations

Qualitative Estimates For Partial Differential Equations
Title Qualitative Estimates For Partial Differential Equations PDF eBook
Author J N Flavin
Publisher CRC Press
Pages 390
Release 2020-12-18
Genre Mathematics
ISBN 100014237X

Download Qualitative Estimates For Partial Differential Equations Book in PDF, Epub and Kindle

Qualitative Estimates For Partial Differential Equations: An Introduction describes an approach to the use of partial differential equations (PDEs) arising in the modelling of physical phenomena. It treats a wide range of differential inequality techniques applicable to problems arising in engineering and the natural sciences, including fluid and solid mechanics, physics, dynamics, biology, and chemistry. The book begins with an elementary discussion of the fundamental principles of differential inequality techniques for PDEs arising in the solution of physical problems, and then shows how these are used in research. Qualitative Estimates For Partial Differential Equations: An Introduction is an ideal book for students, professors, lecturers, and researchers who need a comprehensive introduction to qualitative methods for PDEs arising in engineering and the natural sciences.

Methods for Partial Differential Equations

Methods for Partial Differential Equations
Title Methods for Partial Differential Equations PDF eBook
Author Marcelo R. Ebert
Publisher Birkhäuser
Pages 473
Release 2018-02-23
Genre Mathematics
ISBN 3319664565

Download Methods for Partial Differential Equations Book in PDF, Epub and Kindle

This book provides an overview of different topics related to the theory of partial differential equations. Selected exercises are included at the end of each chapter to prepare readers for the “research project for beginners” proposed at the end of the book. It is a valuable resource for advanced graduates and undergraduate students who are interested in specializing in this area. The book is organized in five parts: In Part 1 the authors review the basics and the mathematical prerequisites, presenting two of the most fundamental results in the theory of partial differential equations: the Cauchy-Kovalevskaja theorem and Holmgren's uniqueness theorem in its classical and abstract form. It also introduces the method of characteristics in detail and applies this method to the study of Burger's equation. Part 2 focuses on qualitative properties of solutions to basic partial differential equations, explaining the usual properties of solutions to elliptic, parabolic and hyperbolic equations for the archetypes Laplace equation, heat equation and wave equation as well as the different features of each theory. It also discusses the notion of energy of solutions, a highly effective tool for the treatment of non-stationary or evolution models and shows how to define energies for different models. Part 3 demonstrates how phase space analysis and interpolation techniques are used to prove decay estimates for solutions on and away from the conjugate line. It also examines how terms of lower order (mass or dissipation) or additional regularity of the data may influence expected results. Part 4 addresses semilinear models with power type non-linearity of source and absorbing type in order to determine critical exponents: two well-known critical exponents, the Fujita exponent and the Strauss exponent come into play. Depending on concrete models these critical exponents divide the range of admissible powers in classes which make it possible to prove quite different qualitative properties of solutions, for example, the stability of the zero solution or blow-up behavior of local (in time) solutions. The last part features selected research projects and general background material.

Partial Differential Equations

Partial Differential Equations
Title Partial Differential Equations PDF eBook
Author Walter A. Strauss
Publisher John Wiley & Sons
Pages 467
Release 2007-12-21
Genre Mathematics
ISBN 0470054565

Download Partial Differential Equations Book in PDF, Epub and Kindle

Our understanding of the fundamental processes of the natural world is based to a large extent on partial differential equations (PDEs). The second edition of Partial Differential Equations provides an introduction to the basic properties of PDEs and the ideas and techniques that have proven useful in analyzing them. It provides the student a broad perspective on the subject, illustrates the incredibly rich variety of phenomena encompassed by it, and imparts a working knowledge of the most important techniques of analysis of the solutions of the equations. In this book mathematical jargon is minimized. Our focus is on the three most classical PDEs: the wave, heat and Laplace equations. Advanced concepts are introduced frequently but with the least possible technicalities. The book is flexibly designed for juniors, seniors or beginning graduate students in science, engineering or mathematics.

Numerical Analysis of Partial Differential Equations

Numerical Analysis of Partial Differential Equations
Title Numerical Analysis of Partial Differential Equations PDF eBook
Author S. H, Lui
Publisher John Wiley & Sons
Pages 506
Release 2012-01-10
Genre Mathematics
ISBN 1118111117

Download Numerical Analysis of Partial Differential Equations Book in PDF, Epub and Kindle

A balanced guide to the essential techniques for solving elliptic partial differential equations Numerical Analysis of Partial Differential Equations provides a comprehensive, self-contained treatment of the quantitative methods used to solve elliptic partial differential equations (PDEs), with a focus on the efficiency as well as the error of the presented methods. The author utilizes coverage of theoretical PDEs, along with the nu merical solution of linear systems and various examples and exercises, to supply readers with an introduction to the essential concepts in the numerical analysis of PDEs. The book presents the three main discretization methods of elliptic PDEs: finite difference, finite elements, and spectral methods. Each topic has its own devoted chapters and is discussed alongside additional key topics, including: The mathematical theory of elliptic PDEs Numerical linear algebra Time-dependent PDEs Multigrid and domain decomposition PDEs posed on infinite domains The book concludes with a discussion of the methods for nonlinear problems, such as Newton's method, and addresses the importance of hands-on work to facilitate learning. Each chapter concludes with a set of exercises, including theoretical and programming problems, that allows readers to test their understanding of the presented theories and techniques. In addition, the book discusses important nonlinear problems in many fields of science and engineering, providing information as to how they can serve as computing projects across various disciplines. Requiring only a preliminary understanding of analysis, Numerical Analysis of Partial Differential Equations is suitable for courses on numerical PDEs at the upper-undergraduate and graduate levels. The book is also appropriate for students majoring in the mathematical sciences and engineering.

Parameter Estimation in Stochastic Differential Equations

Parameter Estimation in Stochastic Differential Equations
Title Parameter Estimation in Stochastic Differential Equations PDF eBook
Author Jaya P. N. Bishwal
Publisher Springer
Pages 271
Release 2007-09-26
Genre Mathematics
ISBN 3540744487

Download Parameter Estimation in Stochastic Differential Equations Book in PDF, Epub and Kindle

Parameter estimation in stochastic differential equations and stochastic partial differential equations is the science, art and technology of modeling complex phenomena. The subject has attracted researchers from several areas of mathematics. This volume presents the estimation of the unknown parameters in the corresponding continuous models based on continuous and discrete observations and examines extensively maximum likelihood, minimum contrast and Bayesian methods.

Continuum Mechanics and Applications in Geophysics and the Environment

Continuum Mechanics and Applications in Geophysics and the Environment
Title Continuum Mechanics and Applications in Geophysics and the Environment PDF eBook
Author Brian Straughan
Publisher Springer Science & Business Media
Pages 402
Release 2013-03-09
Genre Science
ISBN 3662044390

Download Continuum Mechanics and Applications in Geophysics and the Environment Book in PDF, Epub and Kindle

The topics covered include soil mechanics and porous media, glacier and ice dynamics, climatology and lake physics, climate change as well as numerical algorithms. The book, written by well-known experts, addresses researchers and students interested in physical aspects of our environment.

Simulating radionuclide fate and transport in the unsaturated zone evaluation and sensitivity analyses of select computer models

Simulating radionuclide fate and transport in the unsaturated zone evaluation and sensitivity analyses of select computer models
Title Simulating radionuclide fate and transport in the unsaturated zone evaluation and sensitivity analyses of select computer models PDF eBook
Author Jin-Song Chen
Publisher DIANE Publishing
Pages 186
Release 2002
Genre Radioisotopes
ISBN 1428905421

Download Simulating radionuclide fate and transport in the unsaturated zone evaluation and sensitivity analyses of select computer models Book in PDF, Epub and Kindle