Quadratic Forms Over Semilocal Rings
Title | Quadratic Forms Over Semilocal Rings PDF eBook |
Author | R. Baeza |
Publisher | Springer |
Pages | 204 |
Release | 2006-11-22 |
Genre | Mathematics |
ISBN | 3540358161 |
Quadratic and Hermitian Forms over Rings
Title | Quadratic and Hermitian Forms over Rings PDF eBook |
Author | Max-Albert Knus |
Publisher | Springer Science & Business Media |
Pages | 536 |
Release | 2012-12-06 |
Genre | Mathematics |
ISBN | 3642754015 |
From its birth (in Babylon?) till 1936 the theory of quadratic forms dealt almost exclusively with forms over the real field, the complex field or the ring of integers. Only as late as 1937 were the foundations of a theory over an arbitrary field laid. This was in a famous paper by Ernst Witt. Still too early, apparently, because it took another 25 years for the ideas of Witt to be pursued, notably by Albrecht Pfister, and expanded into a full branch of algebra. Around 1960 the development of algebraic topology and algebraic K-theory led to the study of quadratic forms over commutative rings and hermitian forms over rings with involutions. Not surprisingly, in this more general setting, algebraic K-theory plays the role that linear algebra plays in the case of fields. This book exposes the theory of quadratic and hermitian forms over rings in a very general setting. It avoids, as far as possible, any restriction on the characteristic and takes full advantage of the functorial aspects of the theory. The advantage of doing so is not only aesthetical: on the one hand, some classical proofs gain in simplicity and transparency, the most notable examples being the results on low-dimensional spinor groups; on the other hand new results are obtained, which went unnoticed even for fields, as in the case of involutions on 16-dimensional central simple algebras. The first chapter gives an introduction to the basic definitions and properties of hermitian forms which are used throughout the book.
Quadratic Forms Over Semi-local Rings
Title | Quadratic Forms Over Semi-local Rings PDF eBook |
Author | Kenneth I. Mandelberg |
Publisher | |
Pages | 338 |
Release | 1973 |
Genre | Algebra, Homological |
ISBN |
Quadratic and Hermitian Forms
Title | Quadratic and Hermitian Forms PDF eBook |
Author | W. Scharlau |
Publisher | Springer Science & Business Media |
Pages | 431 |
Release | 2012-12-06 |
Genre | Mathematics |
ISBN | 3642699715 |
For a long time - at least from Fermat to Minkowski - the theory of quadratic forms was a part of number theory. Much of the best work of the great number theorists of the eighteenth and nineteenth century was concerned with problems about quadratic forms. On the basis of their work, Minkowski, Siegel, Hasse, Eichler and many others crea ted the impressive "arithmetic" theory of quadratic forms, which has been the object of the well-known books by Bachmann (1898/1923), Eichler (1952), and O'Meara (1963). Parallel to this development the ideas of abstract algebra and abstract linear algebra introduced by Dedekind, Frobenius, E. Noether and Artin led to today's structural mathematics with its emphasis on classification problems and general structure theorems. On the basis of both - the number theory of quadratic forms and the ideas of modern algebra - Witt opened, in 1937, a new chapter in the theory of quadratic forms. His most fruitful idea was to consider not single "individual" quadratic forms but rather the entity of all forms over a fixed ground field and to construct from this an algebra ic object. This object - the Witt ring - then became the principal object of the entire theory. Thirty years later Pfister demonstrated the significance of this approach by his celebrated structure theorems.
Introduction to Quadratic Forms over Fields
Title | Introduction to Quadratic Forms over Fields PDF eBook |
Author | Tsit-Yuen Lam |
Publisher | American Mathematical Soc. |
Pages | 577 |
Release | 2005 |
Genre | Mathematics |
ISBN | 0821810952 |
This new version of the author's prizewinning book, Algebraic Theory of Quadratic Forms (W. A. Benjamin, Inc., 1973), gives a modern and self-contained introduction to the theory of quadratic forms over fields of characteristic different from two. Starting with few prerequisites beyond linear algebra, the author charts an expert course from Witt's classical theory of quadratic forms, quaternion and Clifford algebras, Artin-Schreier theory of formally real fields, and structural theorems on Witt rings, to the theory of Pfister forms, function fields, and field invariants. These main developments are seamlessly interwoven with excursions into Brauer-Wall groups, local and global fields, trace forms, Galois theory, and elementary algebraic K-theory, to create a uniquely original treatment of quadratic form theory over fields. Two new chapters totaling more than 100 pages have been added to the earlier incarnation of this book to take into account some of the newer results and more recent viewpoints in the area. As is characteristic of this author's expository style, the presentation of the main material in this book is interspersed with a copious number of carefully chosen examples to illustrate the general theory. This feature, together with a rich stock of some 280 exercises for the thirteen chapters, greatly enhances the pedagogical value of this book, both as a graduate text and as a reference work for researchers in algebra, number theory, algebraic geometry, algebraic topology, and geometric topology.
Quadratic and Hermitian Forms
Title | Quadratic and Hermitian Forms PDF eBook |
Author | McMaster University |
Publisher | American Mathematical Soc. |
Pages | 362 |
Release | 1984 |
Genre | Mathematics |
ISBN | 9780821860083 |
Contains the proceedings of the 1983 Seminar on Quadratic and Hermitian Forms held at McMaster University, July 1983. Between 1945 and 1965, most of the work in quadratic (and hermitian) forms took place in arithmetic theory (M Eichler, M Kneser, O T O'Meara).
Orderings, Valuations and Quadratic Forms
Title | Orderings, Valuations and Quadratic Forms PDF eBook |
Author | Tsit-Yuen Lam |
Publisher | American Mathematical Soc. |
Pages | 158 |
Release | 1983 |
Genre | Mathematics |
ISBN | 0821807021 |
Presents an introduction to ordered fields and reduced quadratic forms using valuation-theoretic techniques. This book describes the techniques of residue forms and the relevant Springer theory.