Quadratic and Hermitian Forms over Rings

Quadratic and Hermitian Forms over Rings
Title Quadratic and Hermitian Forms over Rings PDF eBook
Author Max-Albert Knus
Publisher Springer Science & Business Media
Pages 536
Release 2012-12-06
Genre Mathematics
ISBN 3642754015

Download Quadratic and Hermitian Forms over Rings Book in PDF, Epub and Kindle

From its birth (in Babylon?) till 1936 the theory of quadratic forms dealt almost exclusively with forms over the real field, the complex field or the ring of integers. Only as late as 1937 were the foundations of a theory over an arbitrary field laid. This was in a famous paper by Ernst Witt. Still too early, apparently, because it took another 25 years for the ideas of Witt to be pursued, notably by Albrecht Pfister, and expanded into a full branch of algebra. Around 1960 the development of algebraic topology and algebraic K-theory led to the study of quadratic forms over commutative rings and hermitian forms over rings with involutions. Not surprisingly, in this more general setting, algebraic K-theory plays the role that linear algebra plays in the case of fields. This book exposes the theory of quadratic and hermitian forms over rings in a very general setting. It avoids, as far as possible, any restriction on the characteristic and takes full advantage of the functorial aspects of the theory. The advantage of doing so is not only aesthetical: on the one hand, some classical proofs gain in simplicity and transparency, the most notable examples being the results on low-dimensional spinor groups; on the other hand new results are obtained, which went unnoticed even for fields, as in the case of involutions on 16-dimensional central simple algebras. The first chapter gives an introduction to the basic definitions and properties of hermitian forms which are used throughout the book.

Quadratic and Hermitian Forms

Quadratic and Hermitian Forms
Title Quadratic and Hermitian Forms PDF eBook
Author W. Scharlau
Publisher Springer Science & Business Media
Pages 431
Release 2012-12-06
Genre Mathematics
ISBN 3642699715

Download Quadratic and Hermitian Forms Book in PDF, Epub and Kindle

For a long time - at least from Fermat to Minkowski - the theory of quadratic forms was a part of number theory. Much of the best work of the great number theorists of the eighteenth and nineteenth century was concerned with problems about quadratic forms. On the basis of their work, Minkowski, Siegel, Hasse, Eichler and many others crea ted the impressive "arithmetic" theory of quadratic forms, which has been the object of the well-known books by Bachmann (1898/1923), Eichler (1952), and O'Meara (1963). Parallel to this development the ideas of abstract algebra and abstract linear algebra introduced by Dedekind, Frobenius, E. Noether and Artin led to today's structural mathematics with its emphasis on classification problems and general structure theorems. On the basis of both - the number theory of quadratic forms and the ideas of modern algebra - Witt opened, in 1937, a new chapter in the theory of quadratic forms. His most fruitful idea was to consider not single "individual" quadratic forms but rather the entity of all forms over a fixed ground field and to construct from this an algebra ic object. This object - the Witt ring - then became the principal object of the entire theory. Thirty years later Pfister demonstrated the significance of this approach by his celebrated structure theorems.

Quadratic and Hermitian Forms Over Rings

Quadratic and Hermitian Forms Over Rings
Title Quadratic and Hermitian Forms Over Rings PDF eBook
Author Max-Albert Knus
Publisher
Pages 544
Release 1991-04-05
Genre
ISBN 9783642754029

Download Quadratic and Hermitian Forms Over Rings Book in PDF, Epub and Kindle

This book presents the theory of quadratic and hermitian forms over rings in a very general setting. It avoids, as far as possible, any restriction on the characteristic and takes full advantage of the functorial properties of the theory. It is not an encyclopedic survey. It stresses the algebraic aspects of the theory and avoids - within reason - overlapping with other books on quadratic forms (like those of Lam, Milnor-Husemoller and Scharlau). One important tool is descent theory with the corresponding cohomological machinery. It is used to define the classical invariants of quadratic forms, but also for the study of Azmaya algebras, which are fundamental in the theory of Clifford algebras. Clifford algebras are applied, in particular, to treat in detail quadratic forms of low rank and their spinor groups. Another important tool is algebraic K-theory, which plays the role that linear algebra plays in the case of forms over fields. The book contains complete proofs of the stability, cancellation and splitting theorems in the linear and in the unitary case. These results are applied to polynomial rings to give quadratic analogues of the theorem of Quillen and Suslin on projective modules. Another, more geometric, application is to Witt groups of regular rings and Witt groups of real curves and surfaces.

Quadratic and Hermitian Forms

Quadratic and Hermitian Forms
Title Quadratic and Hermitian Forms PDF eBook
Author McMaster University
Publisher American Mathematical Soc.
Pages 362
Release 1984
Genre Mathematics
ISBN 9780821860083

Download Quadratic and Hermitian Forms Book in PDF, Epub and Kindle

Contains the proceedings of the 1983 Seminar on Quadratic and Hermitian Forms held at McMaster University, July 1983. Between 1945 and 1965, most of the work in quadratic (and hermitian) forms took place in arithmetic theory (M Eichler, M Kneser, O T O'Meara).

Introduction to Quadratic Forms over Fields

Introduction to Quadratic Forms over Fields
Title Introduction to Quadratic Forms over Fields PDF eBook
Author Tsit-Yuen Lam
Publisher American Mathematical Soc.
Pages 577
Release 2005
Genre Mathematics
ISBN 0821810952

Download Introduction to Quadratic Forms over Fields Book in PDF, Epub and Kindle

This new version of the author's prizewinning book, Algebraic Theory of Quadratic Forms (W. A. Benjamin, Inc., 1973), gives a modern and self-contained introduction to the theory of quadratic forms over fields of characteristic different from two. Starting with few prerequisites beyond linear algebra, the author charts an expert course from Witt's classical theory of quadratic forms, quaternion and Clifford algebras, Artin-Schreier theory of formally real fields, and structural theorems on Witt rings, to the theory of Pfister forms, function fields, and field invariants. These main developments are seamlessly interwoven with excursions into Brauer-Wall groups, local and global fields, trace forms, Galois theory, and elementary algebraic K-theory, to create a uniquely original treatment of quadratic form theory over fields. Two new chapters totaling more than 100 pages have been added to the earlier incarnation of this book to take into account some of the newer results and more recent viewpoints in the area. As is characteristic of this author's expository style, the presentation of the main material in this book is interspersed with a copious number of carefully chosen examples to illustrate the general theory. This feature, together with a rich stock of some 280 exercises for the thirteen chapters, greatly enhances the pedagogical value of this book, both as a graduate text and as a reference work for researchers in algebra, number theory, algebraic geometry, algebraic topology, and geometric topology.

The Algebraic Theory of Quadratic Forms

The Algebraic Theory of Quadratic Forms
Title The Algebraic Theory of Quadratic Forms PDF eBook
Author Tsit-Yuen Lam
Publisher Addison-Wesley
Pages 344
Release 1980
Genre Mathematics
ISBN 9780805356663

Download The Algebraic Theory of Quadratic Forms Book in PDF, Epub and Kindle

Faithfully Quadratic Rings

Faithfully Quadratic Rings
Title Faithfully Quadratic Rings PDF eBook
Author M. Dickmann
Publisher American Mathematical Soc.
Pages 148
Release 2015-10-27
Genre Mathematics
ISBN 1470414686

Download Faithfully Quadratic Rings Book in PDF, Epub and Kindle

In this monograph the authors extend the classical algebraic theory of quadratic forms over fields to diagonal quadratic forms with invertible entries over broad classes of commutative, unitary rings where is not a sum of squares and is invertible. They accomplish this by: (1) Extending the classical notion of matrix isometry of forms to a suitable notion of -isometry, where is a preorder of the given ring, , or . (2) Introducing in this context three axioms expressing simple properties of (value) representation of elements of the ring by quadratic forms, well-known to hold in the field case.