Processing of Uranium-zirconium Alloys

Processing of Uranium-zirconium Alloys
Title Processing of Uranium-zirconium Alloys PDF eBook
Author
Publisher
Pages 20
Release 1953
Genre Uranium alloys
ISBN

Download Processing of Uranium-zirconium Alloys Book in PDF, Epub and Kindle

Processing of Uranium-zirconium and Uranium-aluminum Alloys, Section 9.1

Processing of Uranium-zirconium and Uranium-aluminum Alloys, Section 9.1
Title Processing of Uranium-zirconium and Uranium-aluminum Alloys, Section 9.1 PDF eBook
Author
Publisher
Pages 46
Release 1970
Genre
ISBN

Download Processing of Uranium-zirconium and Uranium-aluminum Alloys, Section 9.1 Book in PDF, Epub and Kindle

Recovery of Uranium from Spent Zirconium-based Reactor Fuels in the Oak Ridge Volatility Pilot Plant

Recovery of Uranium from Spent Zirconium-based Reactor Fuels in the Oak Ridge Volatility Pilot Plant
Title Recovery of Uranium from Spent Zirconium-based Reactor Fuels in the Oak Ridge Volatility Pilot Plant PDF eBook
Author
Publisher
Pages 12
Release 1964
Genre
ISBN

Download Recovery of Uranium from Spent Zirconium-based Reactor Fuels in the Oak Ridge Volatility Pilot Plant Book in PDF, Epub and Kindle

An Improved Aqueous Process for Zirconium Alloy Nuclear Reactor Fuels

An Improved Aqueous Process for Zirconium Alloy Nuclear Reactor Fuels
Title An Improved Aqueous Process for Zirconium Alloy Nuclear Reactor Fuels PDF eBook
Author B. J. Newby
Publisher
Pages 26
Release 1963
Genre
ISBN

Download An Improved Aqueous Process for Zirconium Alloy Nuclear Reactor Fuels Book in PDF, Epub and Kindle

The Transformation Kinetics of Uranium-zirconium Alloys Containing 50 and 60 WT PCT Uranium

The Transformation Kinetics of Uranium-zirconium Alloys Containing 50 and 60 WT PCT Uranium
Title The Transformation Kinetics of Uranium-zirconium Alloys Containing 50 and 60 WT PCT Uranium PDF eBook
Author John J. Kearns
Publisher
Pages 40
Release 1956
Genre Uranium alloys
ISBN

Download The Transformation Kinetics of Uranium-zirconium Alloys Containing 50 and 60 WT PCT Uranium Book in PDF, Epub and Kindle

A Study of the Explosive Properties of Uranium-zirconium Alloys

A Study of the Explosive Properties of Uranium-zirconium Alloys
Title A Study of the Explosive Properties of Uranium-zirconium Alloys PDF eBook
Author Robert P. Larsen
Publisher
Pages 48
Release 1954
Genre Chemical reactions
ISBN

Download A Study of the Explosive Properties of Uranium-zirconium Alloys Book in PDF, Epub and Kindle

The prevention of explosions during pickling, etching or dissolution of these alloys has been studied; recommendations are made for safe handling. An unclassified safety film on this subject is available for distribution to interested laboratories.

Characterization of Alpha-phase Sintering of Uranium and Uranium-zirconium Alloys for Advanced Nuclear Fuel Applications

Characterization of Alpha-phase Sintering of Uranium and Uranium-zirconium Alloys for Advanced Nuclear Fuel Applications
Title Characterization of Alpha-phase Sintering of Uranium and Uranium-zirconium Alloys for Advanced Nuclear Fuel Applications PDF eBook
Author Grant Helmreich
Publisher
Pages
Release 2012
Genre
ISBN

Download Characterization of Alpha-phase Sintering of Uranium and Uranium-zirconium Alloys for Advanced Nuclear Fuel Applications Book in PDF, Epub and Kindle

The sintering behavior of uranium and uranium-zirconium alloys in the alpha phase were characterized in this research. Metal uranium powder was produced from pieces of depleted uranium metal acquired from the Y-12 plant via hydriding/dehydriding process. The size distribution and morphology of the uranium powder produced by this method were determined by digital optical microscopy. Once the characteristics of the source uranium powder were known, uranium and uranium-zirconium pellets were pressed using a dual-action punch and die. The majority of these pellets were sintered isothermally, first in the alpha phase near 650°C, then in the gamma phase near 800°C. In addition, a few pellets were sintered using more exotic temperature profiles. Pellet shrinkage was continuously measured in situ during sintering. The isothermal shrinkage rates and sintering temperatures for each pellet were fit to a simple model for the initial phase of sintering of spherical powders. The material specific constants required by this model, including the activation energy of the process, were determined for both uranium and uranium-zirconium. Following sintering, pellets were sectioned, mounted, and polished for imaging by electron microscopy. Based on these results, the porosity and microstructure of the sintered pellets were analyzed. The porosity of the uranium-zirconium pellets was consistently lower than that of the pure uranium pellets. In addition, some formation of an alloyed phase of uranium and zirconium was observed. The research presented within this thesis is a continuation of a previous project; however, this research has produced many new results not previously seen. In addition, a number of issues left unresolved by the previous project have been addressed and solved. Most notably, the low original output of the hydride/dehydride powder production system has been increased by an order of magnitude, the actual characteristics of the powder have been measured and determined, shrinkage data was successfully converted into a sintering model, an alloyed phase of uranium and zirconium was produced, and pellet cracking due to delamination has been eliminated.