Principles and Practice of Finite Volume Method

Principles and Practice of Finite Volume Method
Title Principles and Practice of Finite Volume Method PDF eBook
Author Haley Adison
Publisher
Pages 0
Release 2015-03-26
Genre Finite volume method
ISBN 9781632404176

Download Principles and Practice of Finite Volume Method Book in PDF, Epub and Kindle

The principles and practice of finite volume method are highlighted in this book. In this book, readers will find a subject which will increase their interest and involve them to further explore a challenge and work further on the presented solutions. This book can serve the purposes of both; a textbook and a practical guide. It presents a vast variety of ideas in FVM which is a result of the efforts of scientists from across the world. The major topics covered in this book are novel techniques and algorithms in FVM, solution of particular problems through FVM and application of FVM in medicine and engineering. This book is for anyone who wants to grow, improve and explore.

Finite Volumes for Complex Applications IX - Methods, Theoretical Aspects, Examples

Finite Volumes for Complex Applications IX - Methods, Theoretical Aspects, Examples
Title Finite Volumes for Complex Applications IX - Methods, Theoretical Aspects, Examples PDF eBook
Author Robert Klöfkorn
Publisher Springer Nature
Pages 727
Release 2020-06-09
Genre Computers
ISBN 3030436519

Download Finite Volumes for Complex Applications IX - Methods, Theoretical Aspects, Examples Book in PDF, Epub and Kindle

The proceedings of the 9th conference on "Finite Volumes for Complex Applications" (Bergen, June 2020) are structured in two volumes. The first volume collects the focused invited papers, as well as the reviewed contributions from internationally leading researchers in the field of analysis of finite volume and related methods. Topics covered include convergence and stability analysis, as well as investigations of these methods from the point of view of compatibility with physical principles. Altogether, a rather comprehensive overview is given on the state of the art in the field. The properties of the methods considered in the conference give them distinguished advantages for a number of applications. These include fluid dynamics, magnetohydrodynamics, structural analysis, nuclear physics, semiconductor theory, carbon capture utilization and storage, geothermal energy and further topics. The second volume covers reviewed contributions reporting successful applications of finite volume and related methods in these fields. The finite volume method in its various forms is a space discretization technique for partial differential equations based on the fundamental physical principle of conservation. Many finite volume methods preserve further qualitative or asymptotic properties, including maximum principles, dissipativity, monotone decay of free energy, and asymptotic stability, making the finite volume methods compatible discretization methods, which preserve qualitative properties of continuous problems at the discrete level. This structural approach to the discretization of partial differential equations becomes particularly important for multiphysics and multiscale applications. The book is a valuable resource for researchers, PhD and master’s level students in numerical analysis, scientific computing and related fields such as partial differential equations, as well as engineers working in numerical modeling and simulations.

The Finite Volume Method in Computational Fluid Dynamics

The Finite Volume Method in Computational Fluid Dynamics
Title The Finite Volume Method in Computational Fluid Dynamics PDF eBook
Author F. Moukalled
Publisher Springer
Pages 799
Release 2015-08-13
Genre Technology & Engineering
ISBN 3319168746

Download The Finite Volume Method in Computational Fluid Dynamics Book in PDF, Epub and Kindle

This textbook explores both the theoretical foundation of the Finite Volume Method (FVM) and its applications in Computational Fluid Dynamics (CFD). Readers will discover a thorough explanation of the FVM numerics and algorithms used for the simulation of incompressible and compressible fluid flows, along with a detailed examination of the components needed for the development of a collocated unstructured pressure-based CFD solver. Two particular CFD codes are explored. The first is uFVM, a three-dimensional unstructured pressure-based finite volume academic CFD code, implemented within Matlab. The second is OpenFOAM®, an open source framework used in the development of a range of CFD programs for the simulation of industrial scale flow problems. With over 220 figures, numerous examples and more than one hundred exercise on FVM numerics, programming, and applications, this textbook is suitable for use in an introductory course on the FVM, in an advanced course on numerics, and as a reference for CFD programmers and researchers.

Finite Volumes for Complex Applications VIII - Methods and Theoretical Aspects

Finite Volumes for Complex Applications VIII - Methods and Theoretical Aspects
Title Finite Volumes for Complex Applications VIII - Methods and Theoretical Aspects PDF eBook
Author Clément Cancès
Publisher Springer
Pages 457
Release 2017-05-23
Genre Mathematics
ISBN 3319573977

Download Finite Volumes for Complex Applications VIII - Methods and Theoretical Aspects Book in PDF, Epub and Kindle

This first volume of the proceedings of the 8th conference on "Finite Volumes for Complex Applications" (Lille, June 2017) covers various topics including convergence and stability analysis, as well as investigations of these methods from the point of view of compatibility with physical principles. It collects together the focused invited papers comparing advanced numerical methods for Stokes and Navier–Stokes equations on a benchmark, as well as reviewed contributions from internationally leading researchers in the field of analysis of finite volume and related methods, offering a comprehensive overview of the state of the art in the field. The finite volume method in its various forms is a space discretization technique for partial differential equations based on the fundamental physical principle of conservation, and recent decades have brought significant advances in the theoretical understanding of the method. Many finite volume methods preserve further qualitative or asy mptotic properties, including maximum principles, dissipativity, monotone decay of free energy, and asymptotic stability. Due to these properties, finite volume methods belong to the wider class of compatible discretization methods, which preserve qualitative properties of continuous problems at the discrete level. This structural approach to the discretization of partial differential equations becomes particularly important for multiphysics and multiscale applications. The book is a valuable resource for researchers, PhD and master’s level students in numerical analysis, scientific computing and related fields such as partial differential equations, as well as engineers working in numerical modeling and simulations.

Handbook of Numerical Analysis

Handbook of Numerical Analysis
Title Handbook of Numerical Analysis PDF eBook
Author Philippe G. Ciarlet
Publisher Gulf Professional Publishing
Pages 502
Release 1990
Genre Mathematics
ISBN 9780444512475

Download Handbook of Numerical Analysis Book in PDF, Epub and Kindle

The Finite Element Method: Theory, Implementation, and Applications

The Finite Element Method: Theory, Implementation, and Applications
Title The Finite Element Method: Theory, Implementation, and Applications PDF eBook
Author Mats G. Larson
Publisher Springer Science & Business Media
Pages 403
Release 2013-01-13
Genre Computers
ISBN 3642332870

Download The Finite Element Method: Theory, Implementation, and Applications Book in PDF, Epub and Kindle

This book gives an introduction to the finite element method as a general computational method for solving partial differential equations approximately. Our approach is mathematical in nature with a strong focus on the underlying mathematical principles, such as approximation properties of piecewise polynomial spaces, and variational formulations of partial differential equations, but with a minimum level of advanced mathematical machinery from functional analysis and partial differential equations. In principle, the material should be accessible to students with only knowledge of calculus of several variables, basic partial differential equations, and linear algebra, as the necessary concepts from more advanced analysis are introduced when needed. Throughout the text we emphasize implementation of the involved algorithms, and have therefore mixed mathematical theory with concrete computer code using the numerical software MATLAB is and its PDE-Toolbox. We have also had the ambition to cover some of the most important applications of finite elements and the basic finite element methods developed for those applications, including diffusion and transport phenomena, solid and fluid mechanics, and also electromagnetics.​

The Lattice Boltzmann Method

The Lattice Boltzmann Method
Title The Lattice Boltzmann Method PDF eBook
Author Timm Krüger
Publisher Springer
Pages 705
Release 2016-11-07
Genre Science
ISBN 3319446495

Download The Lattice Boltzmann Method Book in PDF, Epub and Kindle

This book is an introduction to the theory, practice, and implementation of the Lattice Boltzmann (LB) method, a powerful computational fluid dynamics method that is steadily gaining attention due to its simplicity, scalability, extensibility, and simple handling of complex geometries. The book contains chapters on the method's background, fundamental theory, advanced extensions, and implementation. To aid beginners, the most essential paragraphs in each chapter are highlighted, and the introductory chapters on various LB topics are front-loaded with special "in a nutshell" sections that condense the chapter's most important practical results. Together, these sections can be used to quickly get up and running with the method. Exercises are integrated throughout the text, and frequently asked questions about the method are dealt with in a special section at the beginning. In the book itself and through its web page, readers can find example codes showing how the LB method can be implemented efficiently on a variety of hardware platforms, including multi-core processors, clusters, and graphics processing units. Students and scientists learning and using the LB method will appreciate the wealth of clearly presented and structured information in this volume.