Mathematical Physics in Theoretical Chemistry
Title | Mathematical Physics in Theoretical Chemistry PDF eBook |
Author | S.M. Blinder |
Publisher | Elsevier |
Pages | 426 |
Release | 2018-11-26 |
Genre | Science |
ISBN | 0128137010 |
Mathematical Physics in Theoretical Chemistry deals with important topics in theoretical and computational chemistry. Topics covered include density functional theory, computational methods in biological chemistry, and Hartree-Fock methods. As the second volume in the Developments in Physical & Theoretical Chemistry series, this volume further highlights the major advances and developments in research, also serving as a basis for advanced study. With a multidisciplinary and encompassing structure guided by a highly experienced editor, the series is designed to enable researchers in both academia and industry stay abreast of developments in physical and theoretical chemistry. - Brings together the most important aspects and recent advances in theoretical and computational chemistry - Covers computational methods for small molecules, density-functional methods, and computational chemistry on personal and quantum computers - Presents cutting-edge developments in theoretical and computational chemistry that are applicable to graduate students and research professionals in chemistry, physics, materials science and biochemistry
Molecular Simulation Methods for Predicting Polymer Properties
Title | Molecular Simulation Methods for Predicting Polymer Properties PDF eBook |
Author | Vassilios Galiatsatos |
Publisher | John Wiley & Sons |
Pages | 325 |
Release | 2005-02-03 |
Genre | Science |
ISBN | 0471464813 |
Among the thousands of synthesized polymers, new polymeric substances and materials with new, often unusual, properties often arise. Consequently, this presents a problem in determining the physical properties of polymers, and thus makes it difficult to ascertain how to synthesize polymers with desired properties. This book discusses what molecular modelling can do to predict the properties of realistic polymer systems. Organized by property, each chapter will address the methods one may use to study the particular system. * Focuses on polymer properties rather than methods, making it more accessible to the average scientist/engineer * All important polymers will be covered, such as amorphous polymers, semicrystalline polymers, elastomers, emulsions, polymer interfaces and surfaces * Chapters contributed by experts in the field * Discusses current commercial software used in molecular simulation
Statistical Modelling of Molecular Descriptors in QSAR/QSPR
Title | Statistical Modelling of Molecular Descriptors in QSAR/QSPR PDF eBook |
Author | Matthias Dehmer |
Publisher | John Wiley & Sons |
Pages | 437 |
Release | 2012-09-13 |
Genre | Medical |
ISBN | 3527645012 |
This handbook and ready reference presents a combination of statistical, information-theoretic, and data analysis methods to meet the challenge of designing empirical models involving molecular descriptors within bioinformatics. The topics range from investigating information processing in chemical and biological networks to studying statistical and information-theoretic techniques for analyzing chemical structures to employing data analysis and machine learning techniques for QSAR/QSPR. The high-profile international author and editor team ensures excellent coverage of the topic, making this a must-have for everyone working in chemoinformatics and structure-oriented drug design.
Graph Representation Learning
Title | Graph Representation Learning PDF eBook |
Author | William L. William L. Hamilton |
Publisher | Springer Nature |
Pages | 141 |
Release | 2022-06-01 |
Genre | Computers |
ISBN | 3031015886 |
Graph-structured data is ubiquitous throughout the natural and social sciences, from telecommunication networks to quantum chemistry. Building relational inductive biases into deep learning architectures is crucial for creating systems that can learn, reason, and generalize from this kind of data. Recent years have seen a surge in research on graph representation learning, including techniques for deep graph embeddings, generalizations of convolutional neural networks to graph-structured data, and neural message-passing approaches inspired by belief propagation. These advances in graph representation learning have led to new state-of-the-art results in numerous domains, including chemical synthesis, 3D vision, recommender systems, question answering, and social network analysis. This book provides a synthesis and overview of graph representation learning. It begins with a discussion of the goals of graph representation learning as well as key methodological foundations in graph theory and network analysis. Following this, the book introduces and reviews methods for learning node embeddings, including random-walk-based methods and applications to knowledge graphs. It then provides a technical synthesis and introduction to the highly successful graph neural network (GNN) formalism, which has become a dominant and fast-growing paradigm for deep learning with graph data. The book concludes with a synthesis of recent advancements in deep generative models for graphs—a nascent but quickly growing subset of graph representation learning.
Molecular Modeling and Prediction of Bioactivity
Title | Molecular Modeling and Prediction of Bioactivity PDF eBook |
Author | Klaus Gundertofte |
Publisher | Springer Science & Business Media |
Pages | 490 |
Release | 2012-12-06 |
Genre | Science |
ISBN | 1461541417 |
Much of chemistry, molecular biology, and drug design, are centered around the relationships between chemical structure and measured properties of compounds and polymers, such as viscosity, acidity, solubility, toxicity, enzyme binding, and membrane penetration. For any set of compounds, these relationships are by necessity complicated, particularly when the properties are of biological nature. To investigate and utilize such complicated relationships, henceforth abbreviated SAR for structure-activity relationships, and QSAR for quantitative SAR, we need a description of the variation in chemical structure of relevant compounds and biological targets, good measures of the biological properties, and, of course, an ability to synthesize compounds of interest. In addition, we need reasonable ways to construct and express the relationships, i. e. , mathematical or other models, as well as ways to select the compounds to be investigated so that the resulting QSAR indeed is informative and useful for the stated purposes. In the present context, these purposes typically are the conceptual understanding of the SAR, and the ability to propose new compounds with improved property profiles. Here we discuss the two latter parts of the SARlQSAR problem, i. e. , reasonable ways to model the relationships, and how to select compounds to make the models as "good" as possible. The second is often called the problem of statistical experimental design, which in the present context we call statistical molecular design, SMD. 1.
Prediction of Polymer Properties
Title | Prediction of Polymer Properties PDF eBook |
Author | Jozef Bicerano |
Publisher | CRC Press |
Pages | 735 |
Release | 2002-08-01 |
Genre | Science |
ISBN | 0203910117 |
Highlighting a broad range multiscale modeling and methods for anticipating the morphologies and the properties of interfaces and multiphase materials, this reference covers the methodology of predicting polymer properties and its potential application to a wider variety of polymer types than previously thought possible. A comprehensive source, the
Molecular Dynamics Simulations of Disordered Materials
Title | Molecular Dynamics Simulations of Disordered Materials PDF eBook |
Author | Carlo Massobrio |
Publisher | Springer |
Pages | 540 |
Release | 2015-04-22 |
Genre | Technology & Engineering |
ISBN | 3319156756 |
This book is a unique reference work in the area of atomic-scale simulation of glasses. For the first time, a highly selected panel of about 20 researchers provides, in a single book, their views, methodologies and applications on the use of molecular dynamics as a tool to describe glassy materials. The book covers a wide range of systems covering "traditional" network glasses, such as chalcogenides and oxides, as well as glasses for applications in the area of phase change materials. The novelty of this work is the interplay between molecular dynamics methods (both at the classical and first-principles level) and the structure of materials for which, quite often, direct experimental structural information is rather scarce or absent. The book features specific examples of how quite subtle features of the structure of glasses can be unraveled by relying on the predictive power of molecular dynamics, used in connection with a realistic description of forces.