Solving Polynomial Equations
Title | Solving Polynomial Equations PDF eBook |
Author | Alicia Dickenstein |
Publisher | Springer Science & Business Media |
Pages | 433 |
Release | 2005-04-27 |
Genre | Computers |
ISBN | 3540243267 |
This book provides a general introduction to modern mathematical aspects in computing with multivariate polynomials and in solving algebraic systems. It presents the state of the art in several symbolic, numeric, and symbolic-numeric techniques, including effective and algorithmic methods in algebraic geometry and computational algebra, complexity issues, and applications ranging from statistics and geometric modelling to robotics and vision. Graduate students, as well as researchers in related areas, will find an excellent introduction to currently interesting topics. These cover Groebner and border bases, multivariate resultants, residues, primary decomposition, multivariate polynomial factorization, homotopy continuation, complexity issues, and their applications.
Solving Systems of Polynomial Equations
Title | Solving Systems of Polynomial Equations PDF eBook |
Author | Bernd Sturmfels |
Publisher | American Mathematical Soc. |
Pages | 162 |
Release | 2002 |
Genre | Mathematics |
ISBN | 0821832514 |
Bridging a number of mathematical disciplines, and exposing many facets of systems of polynomial equations, Bernd Sturmfels's study covers a wide spectrum of mathematical techniques and algorithms, both symbolic and numerical.
Intermediate Algebra 2e
Title | Intermediate Algebra 2e PDF eBook |
Author | Lynn Marecek |
Publisher | |
Pages | |
Release | 2020-05-06 |
Genre | |
ISBN | 9781951693848 |
Numerical Polynomial Algebra
Title | Numerical Polynomial Algebra PDF eBook |
Author | Hans J. Stetter |
Publisher | SIAM |
Pages | 475 |
Release | 2004-05-01 |
Genre | Mathematics |
ISBN | 0898715571 |
This book is the first comprehensive treatment of numerical polynomial algebra, an area which so far has received little attention.
Polynomials
Title | Polynomials PDF eBook |
Author | Cheon Seoung Ryoo |
Publisher | BoD – Books on Demand |
Pages | 174 |
Release | 2019-05-02 |
Genre | Mathematics |
ISBN | 183880269X |
Polynomials are well known for their ability to improve their properties and for their applicability in the interdisciplinary fields of engineering and science. Many problems arising in engineering and physics are mathematically constructed by differential equations. Most of these problems can only be solved using special polynomials. Special polynomials and orthonormal polynomials provide a new way to analyze solutions of various equations often encountered in engineering and physical problems. In particular, special polynomials play a fundamental and important role in mathematics and applied mathematics. Until now, research on polynomials has been done in mathematics and applied mathematics only. This book is based on recent results in all areas related to polynomials. Divided into sections on theory and application, this book provides an overview of the current research in the field of polynomials. Topics include cyclotomic and Littlewood polynomials; Descartes' rule of signs; obtaining explicit formulas and identities for polynomials defined by generating functions; polynomials with symmetric zeros; numerical investigation on the structure of the zeros of the q-tangent polynomials; investigation and synthesis of robust polynomials in uncertainty on the basis of the root locus theory; pricing basket options by polynomial approximations; and orthogonal expansion in time domain method for solving Maxwell's equations using paralleling-in-order scheme.
A Polynomial Approach to Linear Algebra
Title | A Polynomial Approach to Linear Algebra PDF eBook |
Author | Paul A. Fuhrmann |
Publisher | Springer Science & Business Media |
Pages | 368 |
Release | 2012-10-01 |
Genre | Mathematics |
ISBN | 1441987347 |
A Polynomial Approach to Linear Algebra is a text which is heavily biased towards functional methods. In using the shift operator as a central object, it makes linear algebra a perfect introduction to other areas of mathematics, operator theory in particular. This technique is very powerful as becomes clear from the analysis of canonical forms (Frobenius, Jordan). It should be emphasized that these functional methods are not only of great theoretical interest, but lead to computational algorithms. Quadratic forms are treated from the same perspective, with emphasis on the important examples of Bezoutian and Hankel forms. These topics are of great importance in applied areas such as signal processing, numerical linear algebra, and control theory. Stability theory and system theoretic concepts, up to realization theory, are treated as an integral part of linear algebra. Finally there is a chapter on Hankel norm approximation for the case of scalar rational functions which allows the reader to access ideas and results on the frontier of current research.
Polynomial Approximation of Differential Equations
Title | Polynomial Approximation of Differential Equations PDF eBook |
Author | Daniele Funaro |
Publisher | Springer Science & Business Media |
Pages | 315 |
Release | 2008-10-04 |
Genre | Science |
ISBN | 3540467831 |
This book is devoted to the analysis of approximate solution techniques for differential equations, based on classical orthogonal polynomials. These techniques are popularly known as spectral methods. In the last few decades, there has been a growing interest in this subject. As a matter offact, spectral methods provide a competitive alternative to other standard approximation techniques, for a large variety of problems. Initial ap plications were concerned with the investigation of periodic solutions of boundary value problems using trigonometric polynomials. Subsequently, the analysis was extended to algebraic polynomials. Expansions in orthogonal basis functions were preferred, due to their high accuracy and flexibility in computations. The aim of this book is to present a preliminary mathematical background for be ginners who wish to study and perform numerical experiments, or who wish to improve their skill in order to tackle more specific applications. In addition, it furnishes a com prehensive collection of basic formulas and theorems that are useful for implementations at any level of complexity. We tried to maintain an elementary exposition so that no experience in functional analysis is required.