Point Process Calculus in Time and Space

Point Process Calculus in Time and Space
Title Point Process Calculus in Time and Space PDF eBook
Author Pierre Brémaud
Publisher Springer
Pages 556
Release 2020-12-06
Genre Mathematics
ISBN 9783030627522

Download Point Process Calculus in Time and Space Book in PDF, Epub and Kindle

This book provides an introduction to the theory and applications of point processes, both in time and in space. Presenting the two components of point process calculus, the martingale calculus and the Palm calculus, it aims to develop the computational skills needed for the study of stochastic models involving point processes, providing enough of the general theory for the reader to reach a technical level sufficient for most applications. Classical and not-so-classical models are examined in detail, including Poisson–Cox, renewal, cluster and branching (Kerstan–Hawkes) point processes.The applications covered in this text (queueing, information theory, stochastic geometry and signal analysis) have been chosen not only for their intrinsic interest but also because they illustrate the theory. Written in a rigorous but not overly abstract style, the book will be accessible to earnest beginners with a basic training in probability but will also interest upper graduate students and experienced researchers.

Random Point Processes in Time and Space

Random Point Processes in Time and Space
Title Random Point Processes in Time and Space PDF eBook
Author Donald L. Snyder
Publisher Springer Science & Business Media
Pages 489
Release 2012-12-06
Genre Technology & Engineering
ISBN 1461231663

Download Random Point Processes in Time and Space Book in PDF, Epub and Kindle

This book is a revision of Random Point Processes written by D. L. Snyder and published by John Wiley and Sons in 1975. More emphasis is given to point processes on multidimensional spaces, especially to pro cesses in two dimensions. This reflects the tremendous increase that has taken place in the use of point-process models for the description of data from which images of objects of interest are formed in a wide variety of scientific and engineering disciplines. A new chapter, Translated Poisson Processes, has been added, and several of the chapters of the fIrst edition have been modifIed to accommodate this new material. Some parts of the fIrst edition have been deleted to make room. Chapter 7 of the fIrst edition, which was about general marked point-processes, has been eliminated, but much of the material appears elsewhere in the new text. With some re luctance, we concluded it necessary to eliminate the topic of hypothesis testing for point-process models. Much of the material of the fIrst edition was motivated by the use of point-process models in applications at the Biomedical Computer Labo ratory of Washington University, as is evident from the following excerpt from the Preface to the first edition. "It was Jerome R. Cox, Jr. , founder and [1974] director of Washington University's Biomedical Computer Laboratory, who ftrst interested me [D. L. S.

Point Process Calculus in Time and Space

Point Process Calculus in Time and Space
Title Point Process Calculus in Time and Space PDF eBook
Author Pierre Brémaud
Publisher Springer Nature
Pages 556
Release 2020-12-05
Genre Mathematics
ISBN 3030627535

Download Point Process Calculus in Time and Space Book in PDF, Epub and Kindle

This book provides an introduction to the theory and applications of point processes, both in time and in space. Presenting the two components of point process calculus, the martingale calculus and the Palm calculus, it aims to develop the computational skills needed for the study of stochastic models involving point processes, providing enough of the general theory for the reader to reach a technical level sufficient for most applications. Classical and not-so-classical models are examined in detail, including Poisson–Cox, renewal, cluster and branching (Kerstan–Hawkes) point processes.The applications covered in this text (queueing, information theory, stochastic geometry and signal analysis) have been chosen not only for their intrinsic interest but also because they illustrate the theory. Written in a rigorous but not overly abstract style, the book will be accessible to earnest beginners with a basic training in probability but will also interest upper graduate students and experienced researchers.

Palm Probabilities and Stationary Queues

Palm Probabilities and Stationary Queues
Title Palm Probabilities and Stationary Queues PDF eBook
Author Francois Baccelli
Publisher Springer Science & Business Media
Pages 116
Release 2012-12-06
Genre Mathematics
ISBN 1461575613

Download Palm Probabilities and Stationary Queues Book in PDF, Epub and Kindle

Lectures on the Poisson Process

Lectures on the Poisson Process
Title Lectures on the Poisson Process PDF eBook
Author Günter Last
Publisher Cambridge University Press
Pages 315
Release 2017-10-26
Genre Mathematics
ISBN 1107088011

Download Lectures on the Poisson Process Book in PDF, Epub and Kindle

A modern introduction to the Poisson process, with general point processes and random measures, and applications to stochastic geometry.

Advanced Spatial Modeling with Stochastic Partial Differential Equations Using R and INLA

Advanced Spatial Modeling with Stochastic Partial Differential Equations Using R and INLA
Title Advanced Spatial Modeling with Stochastic Partial Differential Equations Using R and INLA PDF eBook
Author Elias T. Krainski
Publisher CRC Press
Pages 284
Release 2018-12-07
Genre Mathematics
ISBN 0429629850

Download Advanced Spatial Modeling with Stochastic Partial Differential Equations Using R and INLA Book in PDF, Epub and Kindle

Modeling spatial and spatio-temporal continuous processes is an important and challenging problem in spatial statistics. Advanced Spatial Modeling with Stochastic Partial Differential Equations Using R and INLA describes in detail the stochastic partial differential equations (SPDE) approach for modeling continuous spatial processes with a Matérn covariance, which has been implemented using the integrated nested Laplace approximation (INLA) in the R-INLA package. Key concepts about modeling spatial processes and the SPDE approach are explained with examples using simulated data and real applications. This book has been authored by leading experts in spatial statistics, including the main developers of the INLA and SPDE methodologies and the R-INLA package. It also includes a wide range of applications: * Spatial and spatio-temporal models for continuous outcomes * Analysis of spatial and spatio-temporal point patterns * Coregionalization spatial and spatio-temporal models * Measurement error spatial models * Modeling preferential sampling * Spatial and spatio-temporal models with physical barriers * Survival analysis with spatial effects * Dynamic space-time regression * Spatial and spatio-temporal models for extremes * Hurdle models with spatial effects * Penalized Complexity priors for spatial models All the examples in the book are fully reproducible. Further information about this book, as well as the R code and datasets used, is available from the book website at http://www.r-inla.org/spde-book. The tools described in this book will be useful to researchers in many fields such as biostatistics, spatial statistics, environmental sciences, epidemiology, ecology and others. Graduate and Ph.D. students will also find this book and associated files a valuable resource to learn INLA and the SPDE approach for spatial modeling.

Essentials of Stochastic Processes

Essentials of Stochastic Processes
Title Essentials of Stochastic Processes PDF eBook
Author Richard Durrett
Publisher Springer
Pages 282
Release 2016-11-07
Genre Mathematics
ISBN 3319456148

Download Essentials of Stochastic Processes Book in PDF, Epub and Kindle

Building upon the previous editions, this textbook is a first course in stochastic processes taken by undergraduate and graduate students (MS and PhD students from math, statistics, economics, computer science, engineering, and finance departments) who have had a course in probability theory. It covers Markov chains in discrete and continuous time, Poisson processes, renewal processes, martingales, and option pricing. One can only learn a subject by seeing it in action, so there are a large number of examples and more than 300 carefully chosen exercises to deepen the reader’s understanding. Drawing from teaching experience and student feedback, there are many new examples and problems with solutions that use TI-83 to eliminate the tedious details of solving linear equations by hand, and the collection of exercises is much improved, with many more biological examples. Originally included in previous editions, material too advanced for this first course in stochastic processes has been eliminated while treatment of other topics useful for applications has been expanded. In addition, the ordering of topics has been improved; for example, the difficult subject of martingales is delayed until its usefulness can be applied in the treatment of mathematical finance.