Physics in Radiation Oncology Self-Assessment Guide
Title | Physics in Radiation Oncology Self-Assessment Guide PDF eBook |
Author | Ping Xia, PhD |
Publisher | Springer Publishing Company |
Pages | 274 |
Release | 2015-09-08 |
Genre | Medical |
ISBN | 161705240X |
This guide & companion to the Radiation Oncology Self-Assessment Guide is a comprehensive physics review for anyone in the field of radiation oncology looking to enhance their knowledge of medical physics. It covers in depth the principles of radiation physics as applied to radiation therapy along with their technical and clinical applications. To foster retention of key concepts and data, the resource utilizes a user-friendly ìflash cardî question and answer format with over 800 questions. The questions are supported by detailed answers and rationales along with reference citations for source information. The Guide is comprised of 14 chapters that lead the reader through the radiation oncology physics field, from basic physics to current practice and latest innovations. Aspects of basic physics covered include fundamentals, photon and particle interactions, and dose measurement. A section on current practice covers treatment planning, safety, regulations, quality assurance, and SBRT, SRS, TBI, IMRT, and IGRT techniques. A chapter unique to this volume is dedicated to those topics in diagnostic imaging most relevant to radiology, including MRI, ultrasound, fluoroscopy, mammography, PET, SPECT, and CT. New technologies such as VMAT, novel IGRT devices, proton therapy, and MRI-guided therapy are also incorporated. Focused and authoritative, this must-have review combines the expertise of clinical radiation oncology and radiation physics faculty from the Cleveland Clinic Taussig Cancer Institute. Key Features: Includes more than 800 questions with detailed answers and rationales A one-stop guide for those studying the physics of radiation oncology including those wishing to reinforce their current knowledge of medical physics Delivered in a ìflash cardî format to facilitate recall of key concepts and data Presents a unique chapter on diagnostic imaging topics most relevant to radiation oncology Content provided by a vast array of contributors, including physicists, radiation oncology residents, dosimetrists, and physicians About the Editors: Andrew Godley, PhD, is Staff Physicist, Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland OH Ping Xia, PhD, is Head of Medical Physics and Professor of Molecular Medicine, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH.
Physics in Radiation Oncology Self-Assessment Guide
Title | Physics in Radiation Oncology Self-Assessment Guide PDF eBook |
Author | Andrew Godley, PhD |
Publisher | Springer Publishing Company |
Pages | 478 |
Release | 2015-09-08 |
Genre | Medical |
ISBN | 1620700700 |
This companion guide to the Radiation Oncology Self-Assessment Guide is an excellent resource for any radiotherapy team member looking to hone their medical physics knowledge. It covers in depth the principles of radiation physics as applied to radiation therapy along with their technical and clinical applications. To foster retention of key concepts and data, the resource utilizes a user-friendly ìflash cardî question and answer format with over 800 questions. The questions are supported by detailed answers and rationales along with reference citations for source information.
Radiobiology Self-Assessment Guide
Title | Radiobiology Self-Assessment Guide PDF eBook |
Author | Jennifer Yu, MD, PhD |
Publisher | Springer Publishing Company |
Pages | 520 |
Release | 2016-11-03 |
Genre | Medical |
ISBN | 1617052914 |
Radiobiology Self-Assessment Guide--a companion to the Radiation Oncology Self-Assessment Guide and Physics in Radiation Oncology Self-Assessment Guide--is a comprehensive review for practitioners of radiation oncology looking to enhance their knowledge of radiobiology. It covers in depth the principles of radiobiology as applied to radiation oncology along with their clinical applications. To foster retention of key concepts and data, the resource utilizes a user-friendly "flash card" question and answer format with over 700 questions. The questions are supported by detailed answers and rationales along with reference citations for source information. The guide is comprised of 29 chapters and cover topics commonly found on the radiation and cancer biology portion of the radiation oncology board examination. Aspects of basic radiobiology covered include fundamentals such as cell cycle, cell survival curves and interactions of radiation with matter, and acute and long-term sequelae of radiation. Modern concepts such as immunotherapy, radiogenomics, and normal and cancer stem cells are also included. Focused and authoritative, this must-have review provides the expertise of faculty from the Department of Radiation Oncology at the Cleveland Clinic Taussig Cancer Institute and Lerner Research Institute. Key Features: Provides a comprehensive study guide for the Radiation and Cancer Biology portion to the Radiation Oncology Board Exam Includes more than 700 questions with detailed answers and rationales on flip pages for easy, flash card-like review Includes essential review of cancer biology concepts such as immunotherapy, stem cells, gene therapy, chemotherapy and targeted agents Content provided by a vast array of contributors, including attending radiation oncology physicians, physicists, and radiation oncology residents
Primer on Radiation Oncology Physics
Title | Primer on Radiation Oncology Physics PDF eBook |
Author | Eric Ford |
Publisher | CRC Press |
Pages | 375 |
Release | 2020-05-04 |
Genre | Medical |
ISBN | 0429950241 |
Gain mastery over the fundamentals of radiation oncology physics! This package gives you over 60 tutorial videos (each 15-20 minutes in length) with a companion text, providing the most complete and effective introduction available. Dr. Ford has tested this approach in formal instruction for years with outstanding results. The text includes extensive problem sets for each chapter. The videos include embedded quizzes and "whiteboard" screen technology to facilitate comprehension. Together, this provides a valuable learning tool both for training purposes and as a refresher for those in practice. Key Features A complete learning package for radiation oncology physics, including a full series of video tutorials with an associated textbook companion website Clearly drawn, simple illustrations throughout the videos and text Embedded quiz feature in the video tutorials for testing comprehension while viewing Each chapter includes problem sets (solutions available to educators)
Practical Radiation Oncology Physics
Title | Practical Radiation Oncology Physics PDF eBook |
Author | Sonja Dieterich |
Publisher | Elsevier Health Sciences |
Pages | 387 |
Release | 2015-08-21 |
Genre | Medical |
ISBN | 0323262090 |
Perfect for radiation oncologists, medical physicists, and residents in both fields, Practical Radiation Oncology Physics provides a concise and practical summary of the current practice standards in therapeutic medical physics. A companion to the fourth edition of Clinical Radiation Oncology, by Drs. Leonard Gunderson and Joel Tepper, this indispensable guide helps you ensure a current, state-of-the art clinical practice. Covers key topics such as relative and in-vivo dosimetry, imaging and clinical imaging, stereotactic body radiation therapy, and brachytherapy. Describes technical aspects and patient-related aspects of current clinical practice. Offers key practice guideline recommendations from professional societies throughout - including AAPM, ASTRO, ABS, ACR, IAEA, and others. Includes therapeutic applications of x-rays, gamma rays, electron and charged particle beams, neutrons, and radiation from sealed radionuclide sources, plus the equipment associated with their production, use, measurement, and evaluation. Features a "For the Physician" box in each chapter, which summarizes the key points with the most impact on the quality and safety of patient care. Provides a user-friendly appendix with annotated compilations of all relevant recommendation documents. Includes an enhanced Expert Consult eBook with open-ended questions, ideal for self-assessment and highlighting key points from each chapter. Download and search all of the text, figures, and references on any mobile device.
The Physics of Radiation Therapy
Title | The Physics of Radiation Therapy PDF eBook |
Author | Faiz M. Khan |
Publisher | Lippincott Williams & Wilkins |
Pages | 576 |
Release | 2012-03-28 |
Genre | Medical |
ISBN | 1451149131 |
Dr. Khan's classic textbook on radiation oncology physics is now in its thoroughly revised and updated Fourth Edition. It provides the entire radiation therapy team—radiation oncologists, medical physicists, dosimetrists, and radiation therapists—with a thorough understanding of the physics and practical clinical applications of advanced radiation therapy technologies, including 3D-CRT, stereotactic radiotherapy, HDR, IMRT, IGRT, and proton beam therapy. These technologies are discussed along with the physical concepts underlying treatment planning, treatment delivery, and dosimetry. This Fourth Edition includes brand-new chapters on image-guided radiation therapy (IGRT) and proton beam therapy. Other chapters have been revised to incorporate the most recent developments in the field. This edition also features more than 100 full-color illustrations throughout. A companion Website will offer the fully searchable text and an image bank.
Radiation Oncology Physics
Title | Radiation Oncology Physics PDF eBook |
Author | International Atomic Energy Agency |
Publisher | IAEA |
Pages | 704 |
Release | 2005 |
Genre | Business & Economics |
ISBN |
This publication is aimed at students and teachers involved in teaching programmes in field of medical radiation physics, and it covers the basic medical physics knowledge required in the form of a syllabus for modern radiation oncology. The information will be useful to those preparing for professional certification exams in radiation oncology, medical physics, dosimetry or radiotherapy technology.