PETSc for Partial Differential Equations: Numerical Solutions in C and Python

PETSc for Partial Differential Equations: Numerical Solutions in C and Python
Title PETSc for Partial Differential Equations: Numerical Solutions in C and Python PDF eBook
Author Ed Bueler
Publisher SIAM
Pages 407
Release 2020-10-22
Genre Mathematics
ISBN 1611976316

Download PETSc for Partial Differential Equations: Numerical Solutions in C and Python Book in PDF, Epub and Kindle

The Portable, Extensible Toolkit for Scientific Computation (PETSc) is an open-source library of advanced data structures and methods for solving linear and nonlinear equations and for managing discretizations. This book uses these modern numerical tools to demonstrate how to solve nonlinear partial differential equations (PDEs) in parallel. It starts from key mathematical concepts, such as Krylov space methods, preconditioning, multigrid, and Newton’s method. In PETSc these components are composed at run time into fast solvers. Discretizations are introduced from the beginning, with an emphasis on finite difference and finite element methodologies. The example C programs of the first 12 chapters, listed on the inside front cover, solve (mostly) elliptic and parabolic PDE problems. Discretization leads to large, sparse, and generally nonlinear systems of algebraic equations. For such problems, mathematical solver concepts are explained and illustrated through the examples, with sufficient context to speed further development. PETSc for Partial Differential Equations addresses both discretizations and fast solvers for PDEs, emphasizing practice more than theory. Well-structured examples lead to run-time choices that result in high solver performance and parallel scalability. The last two chapters build on the reader’s understanding of fast solver concepts when applying the Firedrake Python finite element solver library. This textbook, the first to cover PETSc programming for nonlinear PDEs, provides an on-ramp for graduate students and researchers to a major area of high-performance computing for science and engineering. It is suitable as a supplement for courses in scientific computing or numerical methods for differential equations.

Solving PDEs in Python

Solving PDEs in Python
Title Solving PDEs in Python PDF eBook
Author Hans Petter Langtangen
Publisher Springer
Pages 152
Release 2017-03-21
Genre Computers
ISBN 3319524623

Download Solving PDEs in Python Book in PDF, Epub and Kindle

This book offers a concise and gentle introduction to finite element programming in Python based on the popular FEniCS software library. Using a series of examples, including the Poisson equation, the equations of linear elasticity, the incompressible Navier–Stokes equations, and systems of nonlinear advection–diffusion–reaction equations, it guides readers through the essential steps to quickly solving a PDE in FEniCS, such as how to define a finite variational problem, how to set boundary conditions, how to solve linear and nonlinear systems, and how to visualize solutions and structure finite element Python programs. This book is open access under a CC BY license.

Automated Solution of Differential Equations by the Finite Element Method

Automated Solution of Differential Equations by the Finite Element Method
Title Automated Solution of Differential Equations by the Finite Element Method PDF eBook
Author Anders Logg
Publisher Springer Science & Business Media
Pages 723
Release 2012-02-24
Genre Computers
ISBN 3642230997

Download Automated Solution of Differential Equations by the Finite Element Method Book in PDF, Epub and Kindle

This book is a tutorial written by researchers and developers behind the FEniCS Project and explores an advanced, expressive approach to the development of mathematical software. The presentation spans mathematical background, software design and the use of FEniCS in applications. Theoretical aspects are complemented with computer code which is available as free/open source software. The book begins with a special introductory tutorial for beginners. Following are chapters in Part I addressing fundamental aspects of the approach to automating the creation of finite element solvers. Chapters in Part II address the design and implementation of the FEnicS software. Chapters in Part III present the application of FEniCS to a wide range of applications, including fluid flow, solid mechanics, electromagnetics and geophysics.

An Introduction to Domain Decomposition Methods

An Introduction to Domain Decomposition Methods
Title An Introduction to Domain Decomposition Methods PDF eBook
Author Victorita Dolean
Publisher SIAM
Pages 242
Release 2015-12-08
Genre Science
ISBN 1611974054

Download An Introduction to Domain Decomposition Methods Book in PDF, Epub and Kindle

The purpose of this book is to offer an overview of the most popular domain decomposition methods for partial differential equations (PDEs). These methods are widely used for numerical simulations in solid mechanics, electromagnetism, flow in porous media, etc., on parallel machines from tens to hundreds of thousands of cores. The appealing feature of domain decomposition methods is that, contrary to direct methods, they are naturally parallel. The authors focus on parallel linear solvers. The authors present all popular algorithms, both at the PDE level and at the discrete level in terms of matrices, along with systematic scripts for sequential implementation in a free open-source finite element package as well as some parallel scripts. Also included is a new coarse space construction (two-level method) that adapts to highly heterogeneous problems.?

Numerical Analysis of Partial Differential Equations Using Maple and MATLAB

Numerical Analysis of Partial Differential Equations Using Maple and MATLAB
Title Numerical Analysis of Partial Differential Equations Using Maple and MATLAB PDF eBook
Author Martin J. Gander
Publisher SIAM
Pages 163
Release 2018-08-06
Genre Science
ISBN 161197531X

Download Numerical Analysis of Partial Differential Equations Using Maple and MATLAB Book in PDF, Epub and Kindle

This book provides an elementary yet comprehensive introduction to the numerical solution of partial differential equations (PDEs). Used to model important phenomena, such as the heating of apartments and the behavior of electromagnetic waves, these equations have applications in engineering and the life sciences, and most can only be solved approximately using computers.? Numerical Analysis of Partial Differential Equations Using Maple and MATLAB provides detailed descriptions of the four major classes of discretization methods for PDEs (finite difference method, finite volume method, spectral method, and finite element method) and runnable MATLAB? code for each of the discretization methods and exercises. It also gives self-contained convergence proofs for each method using the tools and techniques required for the general convergence analysis but adapted to the simplest setting to keep the presentation clear and complete. This book is intended for advanced undergraduate and early graduate students in numerical analysis and scientific computing and researchers in related fields. It is appropriate for a course on numerical methods for partial differential equations.

Iterative Methods for Sparse Linear Systems

Iterative Methods for Sparse Linear Systems
Title Iterative Methods for Sparse Linear Systems PDF eBook
Author Yousef Saad
Publisher SIAM
Pages 537
Release 2003-04-01
Genre Mathematics
ISBN 0898715342

Download Iterative Methods for Sparse Linear Systems Book in PDF, Epub and Kindle

Mathematics of Computing -- General.

Domain Decomposition

Domain Decomposition
Title Domain Decomposition PDF eBook
Author Barry Smith
Publisher Cambridge University Press
Pages 244
Release 2004-03-25
Genre Computers
ISBN 9780521602860

Download Domain Decomposition Book in PDF, Epub and Kindle

Presents an easy-to-read discussion of domain decomposition algorithms, their implementation and analysis. Ideal for graduate students about to embark on a career in computational science. It will also be a valuable resource for all those interested in parallel computing and numerical computational methods.