Performance Assessment of Asphalt Mixes Containing Reclaimed Asphalt Pavement and Tire Rubber

Performance Assessment of Asphalt Mixes Containing Reclaimed Asphalt Pavement and Tire Rubber
Title Performance Assessment of Asphalt Mixes Containing Reclaimed Asphalt Pavement and Tire Rubber PDF eBook
Author Shawn Shiangfeng Hung
Publisher
Pages
Release 2018
Genre
ISBN 9781085585194

Download Performance Assessment of Asphalt Mixes Containing Reclaimed Asphalt Pavement and Tire Rubber Book in PDF, Epub and Kindle

The pavement community, including both agencies and industries, is moving toward more sustainable pavement designs and pavement network management. Increasing amounts of recycled materials, both reclaimed asphalt pavement (RAP) and recycled tire rubber, are expected to be used in new pavement construction projects in the future to reduce the use of virgin binder and aggregates. The main concern of using recycled materials in new asphalt pavement is the potential negative effect on the performance. Thus, the primary objective of this dissertation is to improve the current laboratory testing technologies and performance assessment approaches for characterizing the performance-related properties of asphalt mixes containing recycled materials and to improve understanding of how these properties affect the performance of asphalt pavements so that they can be designed and constructed better. A major challenge regarding the use of high RAP content mixes is the differences in the rheological properties of the virgin binder (mixes without RAP) and the blended binder (mixes with RAP). Traditionally, binder blending charts are used to determine the appropriate RAP content in asphalt mixes and the selection of virgin binder grade as part of the Superpave volumetric mix design procedures when RAP is incorporated in the mix. However, producing mixes based on blending charts that require testing of extracted and recovered RAP binders is expensive and hazardous. An alternative test approach for binder blending charts using fine aggregate matrix (FAM) mix testing is presented in this dissertation. The results demonstrated that the proposed approach could estimate the blended binder intermediate and low performance grading temperatures within ±3°C of the measured blended binder performance grading temperatures. Even though the proposed approach is not as accurate as the blending chart method (within ±2°C), it provides both cost and environmental benefits. Currently, the Superpave Performance Grading (PG) system cannot not be used to evaluate the performance-related properties of asphalt rubber binders produced using larger crumb rubber particles (maximum particle size passing 2.36 mm sieve) due to the limitations of parallel plate geometry. With the consideration of more open-graded or gap-graded rubberized hot mix asphalt (RHMA-O and RHMA-G) projects in the future, it is important to be able to perform Superpave PG testing on asphalt rubber binder and to establish performance-based contract acceptance criteria for the production of asphalt rubber binders. The test results indicated that the concentric cylinder geometry is an appropriate alternative geometry to parallel plates for quantifying the properties of asphalt rubber binders and specifically for assessing the high-temperature performance properties of binders containing crumb rubber particles larger than 250 [mu]m. Concerns have been raised with regard to incorporating reclaimed rubberized asphalt pavement (RRAP) into dense-graded new hot mix asphalt (HMA-DG) and RAP into new RHMA-G since the interactions between the virgin binder, age-hardened binder, and recycled tire rubber could considerably affect the rutting, fatigue cracking, and thermal cracking performances of new HMA-DG and RHMA-G. The fundamental differences between RAP and RRAP were identified and the performance of new mixes that contain these recycled materials were evaluated in this study. The experimental results showed that adding RRAP to HMA-DG mixes is ideal to resist rutting and low-temperature cracking based on the changes in mix stiffness. The HMA-DG mixes containing RRAP are better at resisting high tensile strain loadings than mixes containing RAP. In addition, adding RAP to RHMA-G mixes improves the rutting performance but diminishes the cracking performance, and potentially negating the benefits of selecting RHMA-G as an overlay to retard the rate of reflection cracking. Lastly, the effects of rest periods on asphalt fatigue performance considering asphalt thixotropy, non-linearity, self-heating, self-cooling, and steric hardening were also investigated in this research. The experimental test results showed that asphalt thixotropic softening and other biasing effects control the first 10 to 15 percent decrease in stiffness for unmodified binders and 15 to 35 percent decrease in stiffness for modified binders under cyclic loading, and this decrease in stiffness can be recovered with the introduction of rest periods. This means that most of the repeated loadings applied to test specimens within the thixotropic softening range do not caused any fatigue damage but only softening of the materials. Thus, by providing sufficient rest periods within the thixotropic softening range can effectively improve asphalt fatigue performance. Both the thixotropic softening range and the required time for thixotropic recovery (i.e., rest periods) need to be considered in asphalt fatigue test and mechanistic-empirical (ME) design for better evaluation of the true fatigue performance.

Recycled Tire Rubber in Asphalt Pavements

Recycled Tire Rubber in Asphalt Pavements
Title Recycled Tire Rubber in Asphalt Pavements PDF eBook
Author National Research Council (U.S.). Transportation Research Board
Publisher Transportation Research Board National Research
Pages 60
Release 1992
Genre Technology & Engineering
ISBN

Download Recycled Tire Rubber in Asphalt Pavements Book in PDF, Epub and Kindle

Performance of Ground Tire Rubber Modified Asphalt Mixture Overlays Over Jointed Concrete Pavements on US 60 in the Virginia Department of Transportation’s Richmond District

Performance of Ground Tire Rubber Modified Asphalt Mixture Overlays Over Jointed Concrete Pavements on US 60 in the Virginia Department of Transportation’s Richmond District
Title Performance of Ground Tire Rubber Modified Asphalt Mixture Overlays Over Jointed Concrete Pavements on US 60 in the Virginia Department of Transportation’s Richmond District PDF eBook
Author Harikrishnan Nair
Publisher
Pages 0
Release 2022
Genre Asphalt concrete-Additives
ISBN

Download Performance of Ground Tire Rubber Modified Asphalt Mixture Overlays Over Jointed Concrete Pavements on US 60 in the Virginia Department of Transportation’s Richmond District Book in PDF, Epub and Kindle

Ground tire rubber (GTR) from scrap tires is used in asphalt mixtures (rubber modified asphalt [RMA]) for improving the performance of pavements. There are different ways to add GTR in asphalt mixtures, but the two primary methods are referred to as the “wet” and “dry” processes. The dry process incorporates GTR directly into the asphalt mixture during production (directly to the aggregates through the reclaimed asphalt pavement collar). The Virginia Department of Transportation (VDOT) has limited experience with RMA mixtures in Superpave dense-graded mixtures using the dry process, but the relative ease of mixture production makes the dry process an attractive option for RMA. In the fall of 2019, VDOT placed a dense-graded RMA mixture, SM 12.5 (GTR), on US 60 in VDOT’s Richmond District (New Kent County). This was the first use of a SM 12.5 (GTR) mixture in Virginia using the dry process method. The purpose of this study was to establish a performance baseline for a GTR modified dense-graded asphalt mixture that was designed and produced using the dry process. The US 60 project also included the use of a thin hot mix asphalt concrete overlay (THMACO) as an interlayer. An assessment of the THMACO as an interlayer was a secondary objective of the study. The study found that dry process SM 12.5 (GTR) mixture can be produced and placed with no significant field-related concerns and that the special provision developed for its use was effective. Density requirements were achieved, and the as-placed mat had excellent (very low) permeability characteristics. Laboratory performance testing showed the SM 12.5 (GTR) mixture to be more crack resistant than conventionally modified polymer (SM 12.5E) mixtures. Conventionally modified SM E mixtures had slightly better rutting performance. However, this conclusion was based on performance testing and thresholds that were developed for non-modified asphalt mixtures. Additional laboratory and field performance comparison is needed to develop mixture acceptance criteria for GTR mixtures. Further, THMACO mixtures had excellent laboratory reflective cracking resistance properties. They performed particularly well in the Texas overlay test. Grading of extracted (from the asphalt mixture) binder may not provide an accurate representation of the binder performance for the dry process GTR modified asphalt. Continued monitoring of performance will be needed to quantify any benefit of SM 12.5 (GFR) mixtures in comparison with regular SM E mixtures. The study recommends additional field trials with SM 12.5 (GTR) mixtures for performance evaluation. Further, the study recommends continued use of a THMACO as an interlayer to mitigate reflective cracking for composite pavements.

Asphalt Paving Technology

Asphalt Paving Technology
Title Asphalt Paving Technology PDF eBook
Author Carl L. Monismith
Publisher McGraw-Hill Companies
Pages 480
Release 1997-06
Genre Technology & Engineering
ISBN 9780070429833

Download Asphalt Paving Technology Book in PDF, Epub and Kindle

Focusing on asphalt paving technology, this work emphasizes quality control and quality assurance programmes in producing high-quality pavements. It combines theory and practice of asphalt paving including developments and information from the recently completed Strategic Highway Research Program which was designed to improve asphalt specifications, mix design and analysis systems.

Improved Mix Design, Evaluation, and Materials Management Practices for Hot Mix Asphalt with High Reclaimed Asphalt Pavement Content

Improved Mix Design, Evaluation, and Materials Management Practices for Hot Mix Asphalt with High Reclaimed Asphalt Pavement Content
Title Improved Mix Design, Evaluation, and Materials Management Practices for Hot Mix Asphalt with High Reclaimed Asphalt Pavement Content PDF eBook
Author Randy Clark West
Publisher Transportation Research Board
Pages 162
Release 2013
Genre Pavements, Asphalt
ISBN 0309259134

Download Improved Mix Design, Evaluation, and Materials Management Practices for Hot Mix Asphalt with High Reclaimed Asphalt Pavement Content Book in PDF, Epub and Kindle

TRB's National Cooperative Highway Research Program (NCHRP) Report 752: Improved Mix Design, Evaluation, and Materials Management Practices for Hot Mix Asphalt with High Reclaimed Asphalt Pavement Content describes proposed revisions to the American Association of State Highway and Transportation Officials (AASHTO) R 35, Superpave Volumetric Design for Hot Mix Asphalt, and AASHTO M 323, Superpave Volumetric Mix Design, to accommodate the design of asphalt mixtures with high reclaimed asphalt pavement contents.

THE LABORATORY PERFORMANCE AND AGING CHARACTERISTICS OF RUBBER MODIFIED ASPHALT MIXTURE USING A DRY PROCESS

THE LABORATORY PERFORMANCE AND AGING CHARACTERISTICS OF RUBBER MODIFIED ASPHALT MIXTURE USING A DRY PROCESS
Title THE LABORATORY PERFORMANCE AND AGING CHARACTERISTICS OF RUBBER MODIFIED ASPHALT MIXTURE USING A DRY PROCESS PDF eBook
Author
Publisher
Pages
Release 2020
Genre
ISBN

Download THE LABORATORY PERFORMANCE AND AGING CHARACTERISTICS OF RUBBER MODIFIED ASPHALT MIXTURE USING A DRY PROCESS Book in PDF, Epub and Kindle

Abstract : The accumulation of waste tires generates severe environmental issues. Using crumb rubber processed from waste tires on the pavement could relieve the pressure of waste tire on the environment and improve the performance of the pavement as well. The application of crumb rubber on the pavement using the dry process was proved to be a cost-effective strategy in some projects, however, the interaction between the rubber and asphalt binder was unknown in the rubber modified asphalt mixture using the dry process, especially when reclaimed asphalt pavement was adopted. The performance improvement of the rubber particle to the asphalt mixture was closely related to the interaction. The influence of aging on the characteristics of rubber modified asphalt mixture using the dry process is critical to its long-term performance. The scope of the dissertation is to evaluate the performance of rubber modified asphalt mixture using a dry process when reclaimed asphalt pavement was adopted. The influence of aging on the characteristics of the rubber modified asphalt mixture and the extracted asphalt binder were investigated. This dissertation proposed the volumetric design of rubber modified asphalt mixture using the dry process. The aggregate gradation determination, rubber modified asphalt mixture preparation, design binder content determination, and moisture susceptibility evaluation were proposed. The quality control of the laboratory mixture design procedure was critical to guarantee the consistency of the asphalt mixture design in the laboratory and the results of mixture construction in the plant. The high temperature rutting performance and the low temperature cracking performance of plant mixed and laboratory compacted asphalt mixture was evaluated. The influence of various factors, which included mixture design parameters of the asphalt mixture (nominal maximum aggregate size, reclaimed asphalt pavement content, and asphalt content), rubber modification, mixture air void content, test temperature, and aging procedure, on the rutting and low temperature characteristics of asphalt mixtures were evaluated. Based on the evaluation of different assessment parameters, the rubber addition and the rubber addition and aging were the two most critical factors that influenced the rutting and low temperature cracking performance of different asphalt mixtures. The effect of the Trichloroethylene solvent in asphalt binder was investigated, and the extracted asphalt binder was assessed and compared with the base asphalt binder and rubber modified base asphalt binder. Both the existence of Trichloroethylene and the content of Trichloroethylene had a significant influence on the |G*| of unaged and PAV aged asphalt binder. The Trichloroethylene in the extracted asphalt binder significantly influenced the actual performance of the asphalt binder in the reclaimed asphalt binder, thus potentially compromising the success mixture design. The modified extraction procedure was proposed to improve the accuracy of the extraction procedure. The rubber particles in the asphalt mixture using the dry process were not totally interacted with asphalt binder, only the interacted rubber particles were extracted, and the influence of the interacted rubber particle was assessed. The aged asphalt binder weakened the low temperature performance of the extracted asphalt binder. The aged asphalt binder and rubber in extracted asphalt binder guaranteed the asphalt binder to sustain heavy traffic load, thus improved the permanent deformation resistance of asphalt binder.

Evaluating the Performance of the Asphalt Mixes Containing Reclaimed Asphalt Pavement by Considering the Effect of Silo Storage Time

Evaluating the Performance of the Asphalt Mixes Containing Reclaimed Asphalt Pavement by Considering the Effect of Silo Storage Time
Title Evaluating the Performance of the Asphalt Mixes Containing Reclaimed Asphalt Pavement by Considering the Effect of Silo Storage Time PDF eBook
Author Hawraa Kadhim
Publisher
Pages 17
Release 2020
Genre Asphalt pavements
ISBN

Download Evaluating the Performance of the Asphalt Mixes Containing Reclaimed Asphalt Pavement by Considering the Effect of Silo Storage Time Book in PDF, Epub and Kindle

The use of reclaimed asphalt pavement (RAP) in hot mix asphalt (HMA) has been increasing in the last few decades because of its cost benefits and because of a compelling need to preserve the environment and natural resources. It is commonly assumed that HMA containing RAP (HMA-RAP) has an improved resistance to permanent deformation (rutting) and decreased resistance to the fatigue cracking. This is due to the fact that asphalt binder contained in the RAP has been oxidized over the years and is typically stiffer than virgin asphalt binder. However, during the production stage of the HMA-RAP, the blending between aged and virgin asphalt binders would be incomplete or partial, which would lead to heterogeneous distribution of the aged and virgin asphalt binders within the asphalt mix with RAP. Therefore, the purpose of this article is to evaluate the effect of silo storage on the blending mechanism between virgin and RAP asphalt binders and the impact that this would have on performance of the mix. Two plant-produced asphalt mixes (HL-3 and HL-8), typically used in the province of Ontario for surface and base courses in flexible pavements, were considered in this study. The mixes were designed with 15 and 30 % RAP, respectively, and the samples were collected immediately after the production (0 h) or at different silo storage times (1, 4, 8, and 12 h). The temperatures of the collected materials were closely monitored and recorded. The findings of this research indicated that silo-stored samples exhibited some improvement in their rutting and fatigue resistance. The examination of the dynamic modulus master curves indicated that the rheology of the mixes evolved with silo storage and that blending between the aged and the virgin binders has been improved.