PDE's, dispersion, scattering theory and control theory

PDE's, dispersion, scattering theory and control theory
Title PDE's, dispersion, scattering theory and control theory PDF eBook
Author Kaïs Ammari
Publisher
Pages 153
Release 2017
Genre Control theory
ISBN 9782856298589

Download PDE's, dispersion, scattering theory and control theory Book in PDF, Epub and Kindle

Nonlinear Dispersive Partial Differential Equations and Inverse Scattering

Nonlinear Dispersive Partial Differential Equations and Inverse Scattering
Title Nonlinear Dispersive Partial Differential Equations and Inverse Scattering PDF eBook
Author Peter D. Miller
Publisher Springer Nature
Pages 530
Release 2019-11-14
Genre Mathematics
ISBN 1493998064

Download Nonlinear Dispersive Partial Differential Equations and Inverse Scattering Book in PDF, Epub and Kindle

This volume contains lectures and invited papers from the Focus Program on "Nonlinear Dispersive Partial Differential Equations and Inverse Scattering" held at the Fields Institute from July 31-August 18, 2017. The conference brought together researchers in completely integrable systems and PDE with the goal of advancing the understanding of qualitative and long-time behavior in dispersive nonlinear equations. The program included Percy Deift’s Coxeter lectures, which appear in this volume together with tutorial lectures given during the first week of the focus program. The research papers collected here include new results on the focusing ​nonlinear Schrödinger (NLS) equation, the massive Thirring model, and the Benjamin-Bona-Mahoney equation as dispersive PDE in one space dimension, as well as the Kadomtsev-Petviashvili II equation, the Zakharov-Kuznetsov equation, and the Gross-Pitaevskii equation as dispersive PDE in two space dimensions. The Focus Program coincided with the fiftieth anniversary of the discovery by Gardner, Greene, Kruskal and Miura that the Korteweg-de Vries (KdV) equation could be integrated by exploiting a remarkable connection between KdV and the spectral theory of Schrodinger's equation in one space dimension. This led to the discovery of a number of completely integrable models of dispersive wave propagation, including the cubic NLS equation, and the derivative NLS equation in one space dimension and the Davey-Stewartson, Kadomtsev-Petviashvili and Novikov-Veselov equations in two space dimensions. These models have been extensively studied and, in some cases, the inverse scattering theory has been put on rigorous footing. It has been used as a powerful analytical tool to study global well-posedness and elucidate asymptotic behavior of the solutions, including dispersion, soliton resolution, and semiclassical limits.

Partial Differential Equations and Solitary Waves Theory

Partial Differential Equations and Solitary Waves Theory
Title Partial Differential Equations and Solitary Waves Theory PDF eBook
Author Abdul-Majid Wazwaz
Publisher Springer Science & Business Media
Pages 700
Release 2010-05-28
Genre Mathematics
ISBN 364200251X

Download Partial Differential Equations and Solitary Waves Theory Book in PDF, Epub and Kindle

"Partial Differential Equations and Solitary Waves Theory" is a self-contained book divided into two parts: Part I is a coherent survey bringing together newly developed methods for solving PDEs. While some traditional techniques are presented, this part does not require thorough understanding of abstract theories or compact concepts. Well-selected worked examples and exercises shall guide the reader through the text. Part II provides an extensive exposition of the solitary waves theory. This part handles nonlinear evolution equations by methods such as Hirota’s bilinear method or the tanh-coth method. A self-contained treatment is presented to discuss complete integrability of a wide class of nonlinear equations. This part presents in an accessible manner a systematic presentation of solitons, multi-soliton solutions, kinks, peakons, cuspons, and compactons. While the whole book can be used as a text for advanced undergraduate and graduate students in applied mathematics, physics and engineering, Part II will be most useful for graduate students and researchers in mathematics, engineering, and other related fields. Dr. Abdul-Majid Wazwaz is a Professor of Mathematics at Saint Xavier University, Chicago, Illinois, USA.

Partial Differential Equations in Action

Partial Differential Equations in Action
Title Partial Differential Equations in Action PDF eBook
Author Sandro Salsa
Publisher Springer
Pages 714
Release 2015-04-24
Genre Mathematics
ISBN 3319150936

Download Partial Differential Equations in Action Book in PDF, Epub and Kindle

The book is intended as an advanced undergraduate or first-year graduate course for students from various disciplines, including applied mathematics, physics and engineering. It has evolved from courses offered on partial differential equations (PDEs) over the last several years at the Politecnico di Milano. These courses had a twofold purpose: on the one hand, to teach students to appreciate the interplay between theory and modeling in problems arising in the applied sciences, and on the other to provide them with a solid theoretical background in numerical methods, such as finite elements. Accordingly, this textbook is divided into two parts. The first part, chapters 2 to 5, is more elementary in nature and focuses on developing and studying basic problems from the macro-areas of diffusion, propagation and transport, waves and vibrations. In turn the second part, chapters 6 to 11, concentrates on the development of Hilbert spaces methods for the variational formulation and the analysis of (mainly) linear boundary and initial-boundary value problems.

Nonlinear Dispersive Equations

Nonlinear Dispersive Equations
Title Nonlinear Dispersive Equations PDF eBook
Author Christian Klein
Publisher Springer Nature
Pages 596
Release 2021
Genre Differential equations
ISBN 3030914275

Download Nonlinear Dispersive Equations Book in PDF, Epub and Kindle

Nonlinear Dispersive Equations are partial differential equations that naturally arise in physical settings where dispersion dominates dissipation, notably hydrodynamics, nonlinear optics, plasma physics and Bose-Einstein condensates. The topic has traditionally been approached in different ways, from the perspective of modeling of physical phenomena, to that of the theory of partial differential equations, or as part of the theory of integrable systems. This monograph offers a thorough introduction to the topic, uniting the modeling, PDE and integrable systems approaches for the first time in book form. The presentation focuses on three "universal" families of physically relevant equations endowed with a completely integrable member: the Benjamin-Ono, Davey-Stewartson, and Kadomtsev-Petviashvili equations. These asymptotic models are rigorously derived and qualitative properties such as soliton resolution are studied in detail in both integrable and non-integrable models. Numerical simulations are presented throughout to illustrate interesting phenomena. By presenting and comparing results from different fields, the book aims to stimulate scientific interactions and attract new students and researchers to the topic. To facilitate this, the chapters can be read largely independently of each other and the prerequisites have been limited to introductory courses in PDE theory.

Mathematical Theory of Scattering Resonances

Mathematical Theory of Scattering Resonances
Title Mathematical Theory of Scattering Resonances PDF eBook
Author Semyon Dyatlov
Publisher American Mathematical Soc.
Pages 649
Release 2019-09-10
Genre Mathematics
ISBN 147044366X

Download Mathematical Theory of Scattering Resonances Book in PDF, Epub and Kindle

Scattering resonances generalize bound states/eigenvalues for systems in which energy can scatter to infinity. A typical resonance has a rate of oscillation (just as a bound state does) and a rate of decay. Although the notion is intrinsically dynamical, an elegant mathematical formulation comes from considering meromorphic continuations of Green's functions. The poles of these meromorphic continuations capture physical information by identifying the rate of oscillation with the real part of a pole and the rate of decay with its imaginary part. An example from mathematics is given by the zeros of the Riemann zeta function: they are, essentially, the resonances of the Laplacian on the modular surface. The Riemann hypothesis then states that the decay rates for the modular surface are all either or . An example from physics is given by quasi-normal modes of black holes which appear in long-time asymptotics of gravitational waves. This book concentrates mostly on the simplest case of scattering by compactly supported potentials but provides pointers to modern literature where more general cases are studied. It also presents a recent approach to the study of resonances on asymptotically hyperbolic manifolds. The last two chapters are devoted to semiclassical methods in the study of resonances.

Recent Developments in Nonlinear Partial Differential Equations

Recent Developments in Nonlinear Partial Differential Equations
Title Recent Developments in Nonlinear Partial Differential Equations PDF eBook
Author Donatella Danielli
Publisher American Mathematical Soc.
Pages 146
Release 2007
Genre Mathematics
ISBN 0821837400

Download Recent Developments in Nonlinear Partial Differential Equations Book in PDF, Epub and Kindle

This volume contains research and expository articles based on talks presented at the 2nd Symposium on Analysis and PDEs, held at Purdue University. The Symposium focused on topics related to the theory and applications of nonlinear partial differential equations that are at the forefront of current international research. Papers in this volume provide a comprehensive account of many of the recent developments in the field. The topics featured in this volume include: kinetic formulations of nonlinear PDEs; recent unique continuation results and their applications; concentrations and constrained Hamilton-Jacobi equations; nonlinear Schrodinger equations; quasiminimal sets for Hausdorff measures; Schrodinger flows into Kahler manifolds; and parabolic obstacle problems with applications to finance. The clear and concise presentation in many articles makes this volume suitable for both researchers and graduate students.