Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets

Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets
Title Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets PDF eBook
Author Hagen Kleinert
Publisher World Scientific
Pages 1626
Release 2009
Genre Business & Economics
ISBN 9814273570

Download Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets Book in PDF, Epub and Kindle

Topological restrictions. These are relevant to the understanding of the statistical properties of elementary particles and the entanglement phenomena in polymer physics and biophysics. The Chern-Simons theory of particles with fractional statistics (anyons) is introduced and applied to explain the fractional quantum Hall effect." "The relevance of path integrals to financial markets is discussed, and improvements of the famous Black-Scholes formula for option prices are developed which account for the fact that large market fluctuations occur much more frequently than in Gaussian distributions." --Book Jacket.

Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets

Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets
Title Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets PDF eBook
Author Hagen Kleinert
Publisher World Scientific
Pages 1512
Release 2004
Genre Science
ISBN 9789812381071

Download Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets Book in PDF, Epub and Kindle

This is the third, significantly expanded edition of the comprehensive textbook published in 1990 on the theory and applications of path integrals. It is the first book to explicitly solve path integrals of a wide variety of nontrivial quantum-mechanical systems, in particular the hydrogen atom. The solutions have become possible by two major advances. The first is a new euclidean path integral formula which increases the restricted range of applicability of Feynman's famous formula to include singular attractive 1/r and 1/r2 potentials. The second is a simple quantum equivalence principle governing the transformation of euclidean path integrals to spaces with curvature and torsion, which leads to time-sliced path integrals that are manifestly invariant under coordinate transformations. In addition to the time-sliced definition, the author gives a perturbative definition of path integrals which makes them invariant under coordinate transformations. A consistent implementation of this property leads to an extension of the theory of generalized functions by defining uniquely integrals over products of distributions. The powerful Feynman -- Kleinert variational approach is explained and developed systematically into a variational perturbation theory which, in contrast to ordinary perturbation theory, produces convergent expansions. The convergence is uniform from weak to strong couplings, opening a way to precise approximate evaluations of analytically unsolvable path integrals. Tunneling processes are treated in detail. The results are used to determine the lifetime of supercurrents, the stability of metastable thermodynamic phases, and the large-order behavior of perturbationexpansions. A new variational treatment extends the range of validity of previous tunneling theories from large to small barriers. A corresponding extension of large-order perturbation theory also applies now to small orders. Special attention is devoted to path integrals with topological restrictions. These are relevant to the understanding of the statistical properties of elementary particles and the entanglement phenomena in polymer physics and biophysics. The Chem-Simons theory of particles with fractional statistics (anyohs) is introduced and applied to explain the fractional quantum Hall effect. The relevance of path integrals to financial markets is discussed, and improvements of the famous Black -- Scholes formula for option prices are given which account for the fact that large market fluctuations occur much more frequently than in the commonly used Gaussian distributions.

Path Integrals In Quantum Mechanics, Statistics, Polymer Physics, And Financial Markets (5th Edition)

Path Integrals In Quantum Mechanics, Statistics, Polymer Physics, And Financial Markets (5th Edition)
Title Path Integrals In Quantum Mechanics, Statistics, Polymer Physics, And Financial Markets (5th Edition) PDF eBook
Author Hagen Kleinert
Publisher World Scientific
Pages 1626
Release 2009-05-18
Genre Science
ISBN 9814365262

Download Path Integrals In Quantum Mechanics, Statistics, Polymer Physics, And Financial Markets (5th Edition) Book in PDF, Epub and Kindle

This is the fifth, expanded edition of the comprehensive textbook published in 1990 on the theory and applications of path integrals. It is the first book to explicitly solve path integrals of a wide variety of nontrivial quantum-mechanical systems, in particular the hydrogen atom. The solutions have been made possible by two major advances. The first is a new euclidean path integral formula which increases the restricted range of applicability of Feynman's time-sliced formula to include singular attractive 1/r- and 1/r2-potentials. The second is a new nonholonomic mapping principle carrying physical laws in flat spacetime to spacetimes with curvature and torsion, which leads to time-sliced path integrals that are manifestly invariant under coordinate transformations.In addition to the time-sliced definition, the author gives a perturbative, coordinate-independent definition of path integrals, which makes them invariant under coordinate transformations. A consistent implementation of this property leads to an extension of the theory of generalized functions by defining uniquely products of distributions.The powerful Feynman-Kleinert variational approach is explained and developed systematically into a variational perturbation theory which, in contrast to ordinary perturbation theory, produces convergent results. The convergence is uniform from weak to strong couplings, opening a way to precise evaluations of analytically unsolvable path integrals in the strong-coupling regime where they describe critical phenomena.Tunneling processes are treated in detail, with applications to the lifetimes of supercurrents, the stability of metastable thermodynamic phases, and the large-order behavior of perturbation expansions. A variational treatment extends the range of validity to small barriers. A corresponding extension of the large-order perturbation theory now also applies to small orders.Special attention is devoted to path integrals with topological restrictions needed to understand the statistical properties of elementary particles and the entanglement phenomena in polymer physics and biophysics. The Chern-Simons theory of particles with fractional statistics (anyons) is introduced and applied to explain the fractional quantum Hall effect.The relevance of path integrals to financial markets is discussed, and improvements of the famous Black-Scholes formula for option prices are developed which account for the fact, recently experienced in the world markets, that large fluctuations occur much more frequently than in Gaussian distributions.

Techniques and Applications of Path Integration

Techniques and Applications of Path Integration
Title Techniques and Applications of Path Integration PDF eBook
Author L. S. Schulman
Publisher Courier Corporation
Pages 434
Release 2012-10-10
Genre Science
ISBN 0486137023

Download Techniques and Applications of Path Integration Book in PDF, Epub and Kindle

Suitable for advanced undergraduates and graduate students, this text develops the techniques of path integration and deals with applications, covering a host of illustrative examples. 26 figures. 1981 edition.

Path Integral Methods in Quantum Field Theory

Path Integral Methods in Quantum Field Theory
Title Path Integral Methods in Quantum Field Theory PDF eBook
Author R. J. Rivers
Publisher Cambridge University Press
Pages 356
Release 1988-10-27
Genre Science
ISBN 9780521368704

Download Path Integral Methods in Quantum Field Theory Book in PDF, Epub and Kindle

The applications of functional integral methods introduced in this text for solving a range of problems in quantum field theory will prove useful for students and researchers in theoretical physics and quantum field theory.

Path Integrals In Quantum Mechanics, Statistics, Polymer Physics, And Financial Markets (4th Edition)

Path Integrals In Quantum Mechanics, Statistics, Polymer Physics, And Financial Markets (4th Edition)
Title Path Integrals In Quantum Mechanics, Statistics, Polymer Physics, And Financial Markets (4th Edition) PDF eBook
Author Hagen Kleinert
Publisher World Scientific Publishing Company
Pages 1593
Release 2006-07-19
Genre Science
ISBN 9813101717

Download Path Integrals In Quantum Mechanics, Statistics, Polymer Physics, And Financial Markets (4th Edition) Book in PDF, Epub and Kindle

This is the fourth, expanded edition of the comprehensive textbook published in 1990 on the theory and applications of path integrals. It is the first book to explicitly solve path integrals of a wide variety of nontrivial quantum-mechanical systems, in particular the hydrogen atom. The solutions have become possible by two major advances. The first is a new euclidean path integral formula which increases the restricted range of applicability of Feynman's famous formula to include singular attractive 1/r and 1/r2 potentials. The second is a simple quantum equivalence principle governing the transformation of euclidean path integrals to spaces with curvature and torsion, which leads to time-sliced path integrals that are manifestly invariant under coordinate transformations.In addition to the time-sliced definition, the author gives a perturbative definition of path integrals which makes them invariant under coordinate transformations. A consistent implementation of this property leads to an extension of the theory of generalized functions by defining uniquely integrals over products of distributions.The powerful Feynman-Kleinert variational approach is explained and developed systematically into a variational perturbation theory which, in contrast to ordinary perturbation theory, produces convergent expansions. The convergence is uniform from weak to strong couplings, opening a way to precise approximate evaluations of analytically unsolvable path integrals.Tunneling processes are treated in detail. The results are used to determine the lifetime of supercurrents, the stability of metastable thermodynamic phases, and the large-order behavior of perturbation expansions. A new variational treatment extends the range of validity of previous tunneling theories from large to small barriers. A corresponding extension of large-order perturbation theory also applies now to small orders.Special attention is devoted to path integrals with topological restrictions. These are relevant to the understanding of the statistical properties of elementary particles and the entanglement phenomena in polymer physics and biophysics. The Chern-Simons theory of particles with fractional statistics (anyons) is introduced and applied to explain the fractional quantum Hall effect.The relevance of path integrals to financial markets is discussed, and improvements of the famous Black-Scholes formula for option prices are given which account for the fact that large market fluctuations occur much more frequently than in the commonly used Gaussian distributions.The author's other book on ‘Critical Properties of φ4 Theories’ gives a thorough introduction to the field of critical phenomena and develops new powerful resummation techniques for the extraction of physical results from the divergent perturbation expansions.

Lectures in Theoretical Physics

Lectures in Theoretical Physics
Title Lectures in Theoretical Physics PDF eBook
Author Asim Orhan Barut
Publisher
Pages 488
Release 1972-08
Genre Nuclear physics
ISBN

Download Lectures in Theoretical Physics Book in PDF, Epub and Kindle