Partitions, q-Series, and Modular Forms

Partitions, q-Series, and Modular Forms
Title Partitions, q-Series, and Modular Forms PDF eBook
Author Krishnaswami Alladi
Publisher Springer Science & Business Media
Pages 233
Release 2011-11-01
Genre Mathematics
ISBN 1461400287

Download Partitions, q-Series, and Modular Forms Book in PDF, Epub and Kindle

Partitions, q-Series, and Modular Forms contains a collection of research and survey papers that grew out of a Conference on Partitions, q-Series and Modular Forms at the University of Florida, Gainesville in March 2008. It will be of interest to researchers and graduate students that would like to learn of recent developments in the theory of q-series and modular and how it relates to number theory, combinatorics and special functions.

The Web of Modularity: Arithmetic of the Coefficients of Modular Forms and $q$-series

The Web of Modularity: Arithmetic of the Coefficients of Modular Forms and $q$-series
Title The Web of Modularity: Arithmetic of the Coefficients of Modular Forms and $q$-series PDF eBook
Author Ken Ono
Publisher American Mathematical Soc.
Pages 226
Release 2004
Genre Mathematics
ISBN 0821833685

Download The Web of Modularity: Arithmetic of the Coefficients of Modular Forms and $q$-series Book in PDF, Epub and Kindle

Chapter 1.

Analytic Number Theory, Modular Forms and q-Hypergeometric Series

Analytic Number Theory, Modular Forms and q-Hypergeometric Series
Title Analytic Number Theory, Modular Forms and q-Hypergeometric Series PDF eBook
Author George E. Andrews
Publisher Springer
Pages 764
Release 2018-02-01
Genre Mathematics
ISBN 3319683764

Download Analytic Number Theory, Modular Forms and q-Hypergeometric Series Book in PDF, Epub and Kindle

Gathered from the 2016 Gainesville Number Theory Conference honoring Krishna Alladi on his 60th birthday, these proceedings present recent research in number theory. Extensive and detailed, this volume features 40 articles by leading researchers on topics in analytic number theory, probabilistic number theory, irrationality and transcendence, Diophantine analysis, partitions, basic hypergeometric series, and modular forms. Readers will also find detailed discussions of several aspects of the path-breaking work of Srinivasa Ramanujan and its influence on current research. Many of the papers were motivated by Alladi's own research on partitions and q-series as well as his earlier work in number theory. Alladi is well known for his contributions in number theory and mathematics. His research interests include combinatorics, discrete mathematics, sieve methods, probabilistic and analytic number theory, Diophantine approximations, partitions and q-series identities. Graduate students and researchers will find this volume a valuable resource on new developments in various aspects of number theory.

Some Applications of Modular Forms

Some Applications of Modular Forms
Title Some Applications of Modular Forms PDF eBook
Author Peter Sarnak
Publisher Cambridge University Press
Pages 124
Release 1990-11-15
Genre Mathematics
ISBN 1316582442

Download Some Applications of Modular Forms Book in PDF, Epub and Kindle

The theory of modular forms and especially the so-called 'Ramanujan Conjectures' have been applied to resolve problems in combinatorics, computer science, analysis and number theory. This tract, based on the Wittemore Lectures given at Yale University, is concerned with describing some of these applications. In order to keep the presentation reasonably self-contained, Professor Sarnak begins by developing the necessary background material in modular forms. He then considers the solution of three problems: the Ruziewicz problem concerning finitely additive rotationally invariant measures on the sphere; the explicit construction of highly connected but sparse graphs: 'expander graphs' and 'Ramanujan graphs'; and the Linnik problem concerning the distribution of integers that represent a given large integer as a sum of three squares. These applications are carried out in detail. The book therefore should be accessible to a wide audience of graduate students and researchers in mathematics and computer science.

Harmonic Maass Forms and Mock Modular Forms: Theory and Applications

Harmonic Maass Forms and Mock Modular Forms: Theory and Applications
Title Harmonic Maass Forms and Mock Modular Forms: Theory and Applications PDF eBook
Author Kathrin Bringmann
Publisher American Mathematical Soc.
Pages 409
Release 2017-12-15
Genre Mathematics
ISBN 1470419440

Download Harmonic Maass Forms and Mock Modular Forms: Theory and Applications Book in PDF, Epub and Kindle

Modular forms and Jacobi forms play a central role in many areas of mathematics. Over the last 10–15 years, this theory has been extended to certain non-holomorphic functions, the so-called “harmonic Maass forms”. The first glimpses of this theory appeared in Ramanujan's enigmatic last letter to G. H. Hardy written from his deathbed. Ramanujan discovered functions he called “mock theta functions” which over eighty years later were recognized as pieces of harmonic Maass forms. This book contains the essential features of the theory of harmonic Maass forms and mock modular forms, together with a wide variety of applications to algebraic number theory, combinatorics, elliptic curves, mathematical physics, quantum modular forms, and representation theory.

Modular Forms, a Computational Approach

Modular Forms, a Computational Approach
Title Modular Forms, a Computational Approach PDF eBook
Author William A. Stein
Publisher American Mathematical Soc.
Pages 290
Release 2007-02-13
Genre Mathematics
ISBN 0821839608

Download Modular Forms, a Computational Approach Book in PDF, Epub and Kindle

This marvellous and highly original book fills a significant gap in the extensive literature on classical modular forms. This is not just yet another introductory text to this theory, though it could certainly be used as such in conjunction with more traditional treatments. Its novelty lies in its computational emphasis throughout: Stein not only defines what modular forms are, but shows in illuminating detail how one can compute everything about them in practice. This is illustrated throughout the book with examples from his own (entirely free) software package SAGE, which really bring the subject to life while not detracting in any way from its theoretical beauty. The author is the leading expert in computations with modular forms, and what he says on this subject is all tried and tested and based on his extensive experience. As well as being an invaluable companion to those learning the theory in a more traditional way, this book will be a great help to those who wish to use modular forms in applications, such as in the explicit solution of Diophantine equations. There is also a useful Appendix by Gunnells on extensions to more general modular forms, which has enough in it to inspire many PhD theses for years to come. While the book's main readership will be graduate students in number theory, it will also be accessible to advanced undergraduates and useful to both specialists and non-specialists in number theory. --John E. Cremona, University of Nottingham William Stein is an associate professor of mathematics at the University of Washington at Seattle. He earned a PhD in mathematics from UC Berkeley and has held positions at Harvard University and UC San Diego. His current research interests lie in modular forms, elliptic curves, and computational mathematics.

Number Theory and Modular Forms

Number Theory and Modular Forms
Title Number Theory and Modular Forms PDF eBook
Author Bruce C. Berndt
Publisher Springer Science & Business Media
Pages 392
Release 2013-11-11
Genre Mathematics
ISBN 1475760442

Download Number Theory and Modular Forms Book in PDF, Epub and Kindle

Robert A. Rankin, one of the world's foremost authorities on modular forms and a founding editor of The Ramanujan Journal, died on January 27, 2001, at the age of 85. Rankin had broad interests and contributed fundamental papers in a wide variety of areas within number theory, geometry, analysis, and algebra. To commemorate Rankin's life and work, the editors have collected together 25 papers by several eminent mathematicians reflecting Rankin's extensive range of interests within number theory. Many of these papers reflect Rankin's primary focus in modular forms. It is the editors' fervent hope that mathematicians will be stimulated by these papers and gain a greater appreciation for Rankin's contributions to mathematics. This volume would be an inspiration to students and researchers in the areas of number theory and modular forms.