Partial Update Least-Square Adaptive Filtering

Partial Update Least-Square Adaptive Filtering
Title Partial Update Least-Square Adaptive Filtering PDF eBook
Author Bei Xie
Publisher Springer Nature
Pages 105
Release 2022-05-31
Genre Technology & Engineering
ISBN 3031016815

Download Partial Update Least-Square Adaptive Filtering Book in PDF, Epub and Kindle

Adaptive filters play an important role in the fields related to digital signal processing and communication, such as system identification, noise cancellation, channel equalization, and beamforming. In practical applications, the computational complexity of an adaptive filter is an important consideration. The Least Mean Square (LMS) algorithm is widely used because of its low computational complexity ($O(N)$) and simplicity in implementation. The least squares algorithms, such as Recursive Least Squares (RLS), Conjugate Gradient (CG), and Euclidean Direction Search (EDS), can converge faster and have lower steady-state mean square error (MSE) than LMS. However, their high computational complexity ($O(N^2)$) makes them unsuitable for many real-time applications. A well-known approach to controlling computational complexity is applying partial update (PU) method to adaptive filters. A partial update method can reduce the adaptive algorithm complexity by updating part of the weight vector instead of the entire vector or by updating part of the time. In the literature, there are only a few analyses of these partial update adaptive filter algorithms. Most analyses are based on partial update LMS and its variants. Only a few papers have addressed partial update RLS and Affine Projection (AP). Therefore, analyses for PU least-squares adaptive filter algorithms are necessary and meaningful. This monograph mostly focuses on the analyses of the partial update least-squares adaptive filter algorithms. Basic partial update methods are applied to adaptive filter algorithms including Least Squares CMA (LSCMA), EDS, and CG. The PU methods are also applied to CMA1-2 and NCMA to compare with the performance of the LSCMA. Mathematical derivation and performance analysis are provided including convergence condition, steady-state mean and mean-square performance for a time-invariant system. The steady-state mean and mean-square performance are also presented for a time-varying system. Computational complexity is calculated for each adaptive filter algorithm. Numerical examples are shown to compare the computational complexity of the PU adaptive filters with the full-update filters. Computer simulation examples, including system identification and channel equalization, are used to demonstrate the mathematical analysis and show the performance of PU adaptive filter algorithms. They also show the convergence performance of PU adaptive filters. The performance is compared between the original adaptive filter algorithms and different partial-update methods. The performance is also compared among similar PU least-squares adaptive filter algorithms, such as PU RLS, PU CG, and PU EDS. In addition to the generic applications of system identification and channel equalization, two special applications of using partial update adaptive filters are also presented. One application uses PU adaptive filters to detect Global System for Mobile Communication (GSM) signals in a local GSM system using the Open Base Transceiver Station (OpenBTS) and Asterisk Private Branch Exchange (PBX). The other application uses PU adaptive filters to do image compression in a system combining hyperspectral image compression and classification.

Partial-Update Adaptive Signal Processing

Partial-Update Adaptive Signal Processing
Title Partial-Update Adaptive Signal Processing PDF eBook
Author Kutluyil Doğançay
Publisher Academic Press
Pages 295
Release 2008-09-17
Genre Technology & Engineering
ISBN 0080921159

Download Partial-Update Adaptive Signal Processing Book in PDF, Epub and Kindle

Partial-update adaptive signal processing algorithms not only permit significant complexity reduction in adaptive filter implementations, but can also improve adaptive filter performance in telecommunications applications. This book gives state-of-the-art methods for the design and development of partial-update adaptive signal processing algorithms for use in systems development.Partial-Update Adaptive Signal Processing provides a comprehensive coverage of key partial updating schemes, giving detailed information on the theory and applications of acoustic and network echo cancellation, channel equalization and multiuser detection. It also examines convergence and stability issues for partial update algorithms, providing detailed complexity analysis and a unifying treatment of partial-update techniques.Features:• Advanced analysis and design tools• Application examples illustrating the use of partial-update adaptive signal processing• MATLAB codes for developed algorithms This unique reference will be of interest to signal processing and communications engineers, researchers, R&D engineers and graduate students."This is a very systematic and methodical treatment of an adaptive signal processing topic, of particular significance in power limited applications such as in wireless communication systems and smart ad hoc sensor networks. I am very happy to have this book on my shelf, not to gather dust, but to be consulted and used in my own research and teaching activities" – Professor A. G. Constantinides, Imperial College, LondonAbout the author:Kutluyil Dogançay is an associate professor of Electrical Engineering at the University of South Australia. His research interests span statistical and adaptive signal processing and he serves as a consultant to defence and private industry. He was the Signal Processing and Communications Program Chair of IDC Conference 2007, and is currently chair of the IEEE South Australia Communications and Signal Processing Chapter. - Advanced analysis and design tools - Algorithm summaries in tabular format - Case studies illustrate the application of partial update adaptive signal processing

Least-Mean-Square Adaptive Filters

Least-Mean-Square Adaptive Filters
Title Least-Mean-Square Adaptive Filters PDF eBook
Author Simon Haykin
Publisher John Wiley & Sons
Pages 516
Release 2003-09-08
Genre Technology & Engineering
ISBN 9780471215707

Download Least-Mean-Square Adaptive Filters Book in PDF, Epub and Kindle

Edited by the original inventor of the technology. Includes contributions by the foremost experts in the field. The only book to cover these topics together.

Distributed Network Structure Estimation Using Consensus Methods

Distributed Network Structure Estimation Using Consensus Methods
Title Distributed Network Structure Estimation Using Consensus Methods PDF eBook
Author Sai Zhang
Publisher Springer Nature
Pages 76
Release 2022-05-31
Genre Technology & Engineering
ISBN 303101684X

Download Distributed Network Structure Estimation Using Consensus Methods Book in PDF, Epub and Kindle

The area of detection and estimation in a distributed wireless sensor network (WSN) has several applications, including military surveillance, sustainability, health monitoring, and Internet of Things (IoT). Compared with a wired centralized sensor network, a distributed WSN has many advantages including scalability and robustness to sensor node failures. In this book, we address the problem of estimating the structure of distributed WSNs. First, we provide a literature review in: (a) graph theory; (b) network area estimation; and (c) existing consensus algorithms, including average consensus and max consensus. Second, a distributed algorithm for counting the total number of nodes in a wireless sensor network with noisy communication channels is introduced. Then, a distributed network degree distribution estimation (DNDD) algorithm is described. The DNDD algorithm is based on average consensus and in-network empirical mass function estimation. Finally, a fully distributed algorithm for estimating the center and the coverage region of a wireless sensor network is described. The algorithms introduced are appropriate for most connected distributed networks. The performance of the algorithms is analyzed theoretically, and simulations are performed and presented to validate the theoretical results. In this book, we also describe how the introduced algorithms can be used to learn global data information and the global data region.

Node Localization in Wireless Sensor Networks

Node Localization in Wireless Sensor Networks
Title Node Localization in Wireless Sensor Networks PDF eBook
Author Xue Zhang
Publisher Springer Nature
Pages 58
Release 2022-06-01
Genre Technology & Engineering
ISBN 3031016831

Download Node Localization in Wireless Sensor Networks Book in PDF, Epub and Kindle

In sensor network applications, measured data are often meaningful only when the location is accurately known. In this booklet, we study research problems associated with node localization in wireless sensor networks. We describe sensor network localization problems in terms of a detection and estimation framework and we emphasize specifically a cooperative process where sensors with known locations are used to localize nodes at unknown locations. In this class of problems, even if the location of a node is known, the wireless links and transmission modalities between two nodes may be unknown. In this case, sensor nodes are used to detect the location and estimate pertinent data transmission activities between nodes. In addition to the broader problem of sensor localization, this booklet studies also specific localization measurements such as time of arrival (TOA), received signal strength (RSS), and direction of arrival (DOA). The sequential localization algorithm, which uses a subset of sensor nodes to estimate nearby sensor nodes' locations is discussed in detail. Extensive bibliography is given for those readers who want to delve further into specific topics.

Adaptive Filtering

Adaptive Filtering
Title Adaptive Filtering PDF eBook
Author Paulo S. R. Diniz
Publisher Springer Science & Business Media
Pages 664
Release 2012-08-14
Genre Technology & Engineering
ISBN 1461441064

Download Adaptive Filtering Book in PDF, Epub and Kindle

In the fourth edition of Adaptive Filtering: Algorithms and Practical Implementation, author Paulo S.R. Diniz presents the basic concepts of adaptive signal processing and adaptive filtering in a concise and straightforward manner. The main classes of adaptive filtering algorithms are presented in a unified framework, using clear notations that facilitate actual implementation. The main algorithms are described in tables, which are detailed enough to allow the reader to verify the covered concepts. Many examples address problems drawn from actual applications. New material to this edition includes: Analytical and simulation examples in Chapters 4, 5, 6 and 10 Appendix E, which summarizes the analysis of set-membership algorithm Updated problems and references Providing a concise background on adaptive filtering, this book covers the family of LMS, affine projection, RLS and data-selective set-membership algorithms as well as nonlinear, sub-band, blind, IIR adaptive filtering, and more. Several problems are included at the end of chapters, and some of these problems address applications. A user-friendly MATLAB package is provided where the reader can easily solve new problems and test algorithms in a quick manner. Additionally, the book provides easy access to working algorithms for practicing engineers.

Proportionate-type Normalized Least Mean Square Algorithms

Proportionate-type Normalized Least Mean Square Algorithms
Title Proportionate-type Normalized Least Mean Square Algorithms PDF eBook
Author Kevin Wagner
Publisher John Wiley & Sons
Pages 144
Release 2013-07-01
Genre Computers
ISBN 1118579259

Download Proportionate-type Normalized Least Mean Square Algorithms Book in PDF, Epub and Kindle

The topic of this book is proportionate-type normalized least mean squares (PtNLMS) adaptive filtering algorithms, which attempt to estimate an unknown impulse response by adaptively giving gains proportionate to an estimate of the impulse response and the current measured error. These algorithms offer low computational complexity and fast convergence times for sparse impulse responses in network and acoustic echo cancellation applications. New PtNLMS algorithms are developed by choosing gains that optimize user-defined criteria, such as mean square error, at all times. PtNLMS algorithms are extended from real-valued signals to complex-valued signals. The computational complexity of the presented algorithms is examined. Contents 1. Introduction to PtNLMS Algorithms 2. LMS Analysis Techniques 3. PtNLMS Analysis Techniques 4. Algorithms Designed Based on Minimization of User Defined Criteria 5. Probability Density of WD for PtLMS Algorithms 6. Adaptive Step-size PtNLMS Algorithms 7. Complex PtNLMS Algorithms 8. Computational Complexity for PtNLMS Algorithms About the Authors Kevin Wagner has been a physicist with the Radar Division of the Naval Research Laboratory, Washington, DC, USA since 2001. His research interests are in the area of adaptive signal processing and non-convex optimization. Milos Doroslovacki has been with the Department of Electrical and Computer Engineering at George Washington University, USA since 1995, where he is now an Associate Professor. His main research interests are in the fields of adaptive signal processing, communication signals and systems, discrete-time signal and system theory, and wavelets and their applications.