Parity games, separations, and the modal μ-calculus

Parity games, separations, and the modal μ-calculus
Title Parity games, separations, and the modal μ-calculus PDF eBook
Author Dittmann, Christoph
Publisher Universitätsverlag der TU Berlin
Pages 295
Release 2017-03-08
Genre Computers
ISBN 3798328870

Download Parity games, separations, and the modal μ-calculus Book in PDF, Epub and Kindle

The topics of this thesis are the modal μ-calculus and parity games. The modal μ-calculus is a common logic for model-checking in computer science. The model-checking problem of the modal μ-calculus is polynomial time equivalent to solving parity games, a 2-player game on labeled directed graphs. We present the first FPT algorithms (fixed-parameter tractable) for the model-checking problem of the modal μ-calculus on restricted classes of graphs, specifically on classes of bounded Kelly-width or bounded DAG-width. In this process we also prove a general decomposition theorem for the modal μ-calculus and define a useful notion of type for this logic. Then, assuming a class of parity games has a polynomial time algorithm solving it, we consider the problem of extending this algorithm to larger classes of parity games. In particular, we show that joining games, pasting games, or adding single vertices preserves polynomial-time solvability. It follows that parity games can be solved in polynomial time if their underlying undirected graph is a tournament, a complete bipartite graph, or a block graph. In the last chapter we present the first non-trivial formal proof about parity games. We explain a formal proof of positional determinacy of parity games in the proof assistant Isabelle/HOL. Die Themen dieser Dissertation sind der modale μ-Kalkül und Paritätsspiele. Der modale μ-Kalkül ist eine häufig eingesetzte Logik im Bereich des Model-Checkings in der Informatik. Das Model-Checking-Problem des modalen μ-Kalküls ist polynomialzeitäquivalent zum Lösen von Paritätsspielen, einem 2-Spielerspiel auf beschrifteten, gerichteten Graphen. Wir präsentieren die ersten FPT-Algorithmen (fixed-parameter tractable) für das Model-Checking-Problem des modalen μ-Kalküls auf Klassen von Graphen mit beschränkter Kelly-Weite oder beschränkter DAG-Weite. Für diesen Zweck beweisen wir einen allgemeineren Zerlegungssatz für den modalen μ-Kalkül und stellen eine nützliche Definition von Typen für diese Logik vor. Angenommen, eine Klasse von Paritätsspielen hat einen Polynomialzeit-Lösungs-Algorithmus, betrachten wir danach das Problem, diese Klassen zu erweitern auf eine Weise, sodass Polynomialzeit-Lösbarkeit erhalten bleibt. Wir zeigen, dass dies beim Join von Paritätsspielen, beim Pasting und beim Hinzufügen einzelner Knoten der Fall ist. Wir folgern daraus, dass das Lösen von Paritätsspielen in Polynomialzeit möglich ist, falls der unterliegende ungerichtete Graph ein Tournament, ein vollständiger bipartiter Graph oder ein Blockgraph ist. Im letzten Kapitel präsentieren wir den ersten nicht-trivialen formalen Beweis über Paritätsspiele. Wir stellen einen formalen Beweis für die positionale Determiniertheit von Paritätsspielen im Beweis-Assistenten Isabelle/HOL vor.

Reachability Problems

Reachability Problems
Title Reachability Problems PDF eBook
Author Igor Potapov
Publisher Springer
Pages 180
Release 2018-09-13
Genre Computers
ISBN 3030002500

Download Reachability Problems Book in PDF, Epub and Kindle

This book constitutes the refereed proceedings of the 12th International Conference on Reachability Problems, RP 2018, held in Marseille, France, in September 2018. The 11 full papers presented were carefully reviewed and selected from 21 submissions. The papers cover topics such as reachability for infinite state systems; rewriting systems; reachability analysis in counter/timed/cellular/communicating automata; Petri nets; computational aspects of semigroups, groups, and rings; reachability in dynamical and hybrid systems; frontiers between decidable and undecidable reachability problems; complexity and decidability aspects; predictability in iterative maps, and new computational paradigms.

Parity Games, Separations, and the Modal Μ-calculus

Parity Games, Separations, and the Modal Μ-calculus
Title Parity Games, Separations, and the Modal Μ-calculus PDF eBook
Author Christoph Dittmann
Publisher
Pages
Release 2017
Genre
ISBN 9783798328884

Download Parity Games, Separations, and the Modal Μ-calculus Book in PDF, Epub and Kindle

Algorithmic aspects of resource allocation and multiwinner voting: theory and experiments

Algorithmic aspects of resource allocation and multiwinner voting: theory and experiments
Title Algorithmic aspects of resource allocation and multiwinner voting: theory and experiments PDF eBook
Author Kaczmarczyk, Andrzej
Publisher Universitätsverlag der TU Berlin
Pages 248
Release 2021-12-10
Genre Computers
ISBN 3798332150

Download Algorithmic aspects of resource allocation and multiwinner voting: theory and experiments Book in PDF, Epub and Kindle

This thesis is concerned with investigating elements of computational social choice in the light of real-world applications. We contribute to a better understanding of the areas of fair allocation and multiwinner voting. For both areas, inspired by real-world scenarios, we propose several new notions and extensions of existing models. Then, we analyze the complexity of answering the computational questions raised by the introduced concepts. To this end, we look through the lens of parameterized complexity. We identify different parameters which describe natural features specific to the computational problems we investigate. Exploiting the parameters, we successfully develop efficient algorithms for spe- cific cases of the studied problems. We complement our analysis by showing which parameters presumably cannot be utilized for seeking efficient algorithms. Thereby, we provide comprehensive pictures of the computational complexity of the studied problems. Specifically, we concentrate on four topics that we present below, grouped by our two areas of interest. For all but one topic, we present experimental studies based on implementations of newly developed algorithms. We first focus on fair allocation of indivisible resources. In this setting, we consider a collection of indivisible resources and a group of agents. Each agent reports its utility evaluation of every resource and the task is to “fairly” allocate the resources such that each resource is allocated to at most one agent. We concentrate on the two following issues regarding this scenario. The social context in fair allocation of indivisible resources. In many fair allocation settings, it is unlikely that every agent knows all other agents. For example, consider a scenario where the agents represent employees of a large corporation. It is highly unlikely that every employee knows every other employee. Motivated by such settings, we come up with a new model of graph envy-freeness by adapting the classical envy-freeness notion to account for social relations of agents modeled as social networks. We show that if the given social network of agents is simple (for example, if it is a directed acyclic graph), then indeed we can sometimes find fair allocations efficiently. However, we contrast tractability results with showing NP-hardness for several cases, including those in which the given social network has a constant degree. Fair allocations among few agents with bounded rationality. Bounded rationality is the idea that humans, due to cognitive limitations, tend to simplify problems that they face. One of its emanations is that human agents usually tend to report simple utilities over the resources that they want to allocate; for example, agents may categorize the available resources only into two groups of desirable and undesirable ones. Applying techniques for solving integer linear programs, we show that exploiting bounded rationality leads to efficient algorithms for finding envy-free and Pareto-efficient allocations, assuming a small number of agents. Further, we demonstrate that our result actually forms a framework that can be applied to a number of different fairness concepts like envy-freeness up to one good or envy-freeness up to any good. This way, we obtain efficient algorithms for a number of fair allocation problems (assuming few agents with bounded rationality). We also empirically show that our technique is applicable in practice. Further, we study multiwinner voting, where we are given a collection of voters and their preferences over a set of candidates. The outcome of a multiwinner voting rule is a group (or a set of groups in case of ties) of candidates that reflect the voters’ preferences best according to some objective. In this context, we investigate the following themes. The robustness of election outcomes. We study how robust outcomes of multiwinner elections are against possible mistakes made by voters. Assuming that each voter casts a ballot in a form of a ranking of candidates, we represent a mistake by a swap of adjacent candidates in a ballot. We find that for rules such as SNTV, k-Approval, and k-Borda, it is computationally easy to find the minimum number of swaps resulting in a change of an outcome. This task is, however, NP-hard for STV and the Chamberlin-Courant rule. We conclude our study of robustness with experimentally studying the average number of random swaps leading to a change of an outcome for several rules. Strategic voting in multiwinner elections. We ask whether a given group of cooperating voters can manipulate an election outcome in a favorable way. We focus on the k-Approval voting rule and we show that the computational complexity of answering the posed question has a rich structure. We spot several cases for which our problem is polynomial-time solvable. However, we also identify NP-hard cases. For several of them, we show how to circumvent the hardness by fixed-parameter tractability. We also present experimental studies indicating that our algorithms are applicable in practice. Diese Arbeit befasst sich mit der Untersuchung von Themen des Forschungsgebiets Computational Social Choice im Lichte realer Anwendungen. Dabei trägt sie zu einem besseren Verständnis der Bereiche der fairen Zuordnung und der Mehrgewinnerwahlen bei. Für beide Konzepte schlagen wir – inspiriert von realen Anwendungen – verschiedene neue Begriffe und Erweiterungen bestehender Modelle vor. Anschließend analysieren wir die Komplexität der Beantwortung von Berechnungsfragen, die durch die eingeführten Konzepte aufgeworfen werden. Dabei fokussieren wir uns auf die parametrisierte Komplexität. Hierzu identifizieren wir verschiedene Parameter, welche natürliche Merkmale der von uns untersuchten Berechnungsprobleme beschreiben. Durch die Nutzung dieser Parameter entwickeln wir erfolgreich effiziente Algorithmen für Spezialfälle der untersuchten Probleme. Wir ergänzen unsere Analyse indem wir zeigen, welche Parameter vermutlich nicht verwendet werden können um effiziente Algorithmen zu finden. Dabei zeichnen wir ein umfassendes Bild der Berechnungskomplexität der untersuchten Probleme. Insbesondere konzentrieren wir uns auf vier Themen, die wir, gruppiert nach unseren beiden Schwerpunkten, unten vorstellen. Für alle Themen bis auf eines präsentieren wir Experimente, die auf Implementierungen der von uns neu entwickelten Algorithmen basieren. Wir konzentrieren uns zunächst auf die faire Zuordnung unteilbarer Ressourcen. Hier betrachten wir eine Menge unteilbarer Ressourcen und eine Gruppe von Agenten. Jeder Agent gibt eine Bewertung des Nutzens jeder Ressource ab und die Aufgabe besteht darin, eine "faire" Zuordnung der Ressourcen zu finden, wobei jede Ressource höchstens einem Agenten zugeordnet werden kann. Innerhalb dieses Bereiches konzentrieren wir uns auf die beiden folgenden Problemstellungen. Der soziale Kontext bei der fairen Zuordnung unteilbarer Ressourcen. In vielen Szenarien, in denen Ressourcen zugeordnet werden sollen, ist es unwahrscheinlich, dass jeder Agent alle anderen kennt. Vorstellbar ist beispielsweise ein Szenario, in dem die Agenten Mitarbeiter eines großen Unternehmens repräsentieren. Es ist höchst unwahrscheinlich, dass jeder Mitarbeiter jeden anderen Mitarbeiter kennt. Motiviert durch solche Szenarien entwickeln wir ein neues Modell der graph-basierten Neidfreiheit. Wir erweitern den klassischen Neidfreiheitsbegriff um die sozialen Beziehungen von Agenten, die durch soziale Netzwerke modelliert werden. Einerseits zeigen wir, dass wenn das soziale Netzwerk der Agenten einfach ist (zum Beispiel, wenn es sich um einen gerichteten azyklischen Graph handelt), in manchen Fällen faire Zuordnungen effizient gefunden werden können. Andererseits stellen wir diesen algorithmisch positiven Ergebnissen mehrere NP-schweren Fällen entgegen. Ein Beispiel für einen solchen Fall sind soziale Netzwerke mit einem konstanten Knotengrad. Faire Zuteilung an wenige Agenten mit begrenzter Rationalität. Begrenzte Rationalität beschreibt die Idee, dass Menschen aufgrund kognitiver Grenzen dazu neigen, Probleme, mit denen sie konfrontiert werden, zu vereinfachen. Eine mögliche Folge dieser Grenzen ist, dass menschliche Agenten in der Regel einfache Bewertungen der gewünschten Ressourcen abgeben; beispielsweise könnten Agenten die verfügbaren Ressourcen nur in zwei Gruppen, erwünschte und unerwünschte Ressourcen, kategorisieren. Durch Anwendung von Techniken zum Lösen von Ganzzahligen Linearen Programmen zeigen wir, dass unter der Annahme einer kleinen Anzahl von Agenten die Ausnutzung begrenzter Rationalität dabei hilft, effiziente Algorithmen zum Finden neidfreier und Pareto-effizienter Zuweisungen zu entwickeln. Weiterhin zeigen wir, dass unser Ergebnis ein allgemeines Verfahren liefert, welches auf eine Reihe verschiedener Fairnesskonzepte angewendet werden kann, wie zum Beispiel Neidfreiheit bis auf ein Gut oder Neidfreiheit bis auf irgendein Gut. Auf diese Weise gewinnen wir effiziente Algorithmen für eine Reihe fairer Zuordnungsprobleme (wenige Agenten mit begrenzter Rationalität vorausgesetzt). Darüber hinaus zeigen wir empirisch, dass unsere Technik in der Praxis anwendbar ist. Weiterhin untersuchen wir Mehrgewinnerwahlen, bei denen uns eine Menge von Wählern sowie ihre Präferenzen über eine Reihe von Kandidaten gegeben sind. Das Ergebnis eines Mehrgewinnerwahlverfahrens ist eine Gruppe (oder eine Menge von Gruppen im Falle eines Unentschiedens) von Kandidaten, welche die Präferenzen der Wähler am besten einem bestimmten Ziel folgend widerspiegeln. In diesem Kontext untersuchen wir die folgenden Themen. Die Robustheit von Wahlergebnissen. Wir untersuchen, wie robust die Ergebnisse von Mehrgewinnerwahlen gegenüber möglicher Fehler der Wähler sind. Unter der Annahme, dass jeder Wähler eine Stimme in Form einer Rangliste von Kandidaten abgibt, modellieren wir einen Fehler als einen Tausch benachbarter Kandidaten in der Rangliste. Wir zeigen, dass für Wahlregeln wie SNTV, k-Approval und k-Borda die minimale Anzahl an Vertauschungen, welche zu einer Ergebnisänderung führt, einfach zu berechnen ist. Für STV und die Chamberlin-Courant-Regel ist diese Aufgabe allerdings NP-schwer. Wir schließen unsere Untersuchung der Robustheit unterschiedlicher Wahlregeln ab mit einer experimentellen Evaluierung der durchschnittlichen Anzahl zufälliger Vertauschungen, die zu einer Änderung des Ergebnisses führen. Strategische Abstimmung bei Wahlen mit mehreren Gewinnern. Wir fragen, ob eine bestimmte Gruppe von kooperierenden Wählern ein Wahlergebnis zu ihren Gunsten manipulieren kann. Dabei konzentrieren wir uns auf die k-Approval-Wahlregel. Wir zeigen, dass die Berechnungskomplexität der besagten Manipulation eine reiche Struktur besitzt. Auf der einen Seite identifizieren wir mehrere Fälle in denen das Problem in Polynomzeit lösbar ist. Auf der anderen Seite identifizieren wir jedoch auch NP-schwere Fälle. Für einige von ihnen zeigen wir, wie die Berechnungsschwere durch parametrisierte Algorithmen umgangen werden kann. Wir präsentieren zudem experimentelle Untersuchungen, welche darauf hindeuten, dass unsere Algorithmen in der Praxis anwendbar sind.

On the feasibility of multi-leader replication in the early tiers

On the feasibility of multi-leader replication in the early tiers
Title On the feasibility of multi-leader replication in the early tiers PDF eBook
Author Jungnickel, Tim
Publisher Universitätsverlag der TU Berlin
Pages 196
Release 2018-09-27
Genre Mathematics
ISBN 3798330018

Download On the feasibility of multi-leader replication in the early tiers Book in PDF, Epub and Kindle

In traditional service architectures that follow the service statelessness principle, the state is primarily held in the data tier. Here, service operators utilize tailored storage solutions to guarantee the required availability; even though failures can occur at any time. This centralized approach to store and process an application’s state in the data tier implies that outages of the entire tier cannot be tolerated. An alternative approach, which is in focus of this thesis, is to decentralize the processing of state information and to use more stateful components in the early tiers. The possibility to tolerate a temporary outage of an entire tier implies that the application’s state can be manipulated by the remaining tiers without waiting for approval from the unavailable tier. This setup requires multi-leader replication, where every replica can accept writes and forwards the resulting changes to the other replicas. This thesis explores the feasibility of using multi-leader replication to store and process state in a decentralized manner across multiple tiers. To this end, two replication mechanisms, namely Conflict-free Replicated Data Types and Operational Transformation, are under particular investigation. We use and extend both mechanism to demonstrate that the aforementioned decentralization is worth considering when designing a service architecture. The challenges that arise when following our approach go back to fundamental impossibility results in distributed systems research, i.e. the impossibility to achieve a fault-tolerant consensus mechanism in asynchronous systems and the inevitable trade-off between availability and consistency in the presence of failures. With this thesis, we contribute to close the exposed gaps of both results by providing usable alternatives for standard IT services. We exemplify the feasibility of our alternatives with a fully distributed IMAP service and a programming library that provides the necessary extension to utilize our approach in a variety of web-based applications. All contributions of this thesis are based on both theory and practice. In particular, all extensions to the existing multi-leader replication mechanisms were proven to satisfy the necessary properties. Moreover, those extensions were also implemented as prototypical applications and evaluated against the corresponding de facto standard software from the industry. Basierend auf dem “service statelessness principle” ist es üblich, Softwaredienste so zu entwerfen, dass der Zustand des Dienstes primär in einer gekapselten Datenschicht verarbeitet wird. Innerhalb der Datenschicht werden spezielle Lösungen verwendet, um die Verfügbarkeit der Daten sicherzustellen. Dieser zentralisierte Ansatz hat zur Folge, dass ein Ausfall oder eine temporäre Nichtverfügbarkeit der gesamten Datenschicht zwangsweise zur Nichtverfügbarkeit des gesamten Dienstes führt. Ein alternativer Ansatz, welcher in dieser Arbeit erforscht wird, ist die dezentralisierte Speicherung und Verarbeitung der Daten in den darüberliegenden Softwareschichten. Um in diesem Ansatz einen Ausfall der gesamten Datenschicht zu kompensieren, ist es zwingend notwendig, dass die verbleibenden Schichten die eingehenden Anfragen ohne die Bestätigung durch die Datenschicht beantworten können. Hierfür wird eine Replikationsarchitektur benötigt, in der jedes Replikat die Anfragen direkt beantworten kann; die so genannte “multi-leader replication”. In dieser Arbeit werden diese Replikationsarchitekturen verwendet, um den Zustand und die Daten eines Dienstes zu dezentralisieren und über mehrere Schichten zu replizieren. Hierbei werden zwei Mechanismen detaillierter betrachtet: “Conflict-free Replicated Data Types” und “Operational Transformation”. Anschließend werden beide Mechanismen erweitert und hinsichtlich der Verwendbarkeit für den beschriebenen Ansatz geprüft. Als Ergebnis dieser Arbeit wird gezeigt, dass ein dezentralisierter Ansatz mit den vorgestellten Mechanismen in Betracht gezogen werden kann. Die Herausforderungen, die bei der Anwendung dieses Ansatzes entstehen, basieren auf nachweislich unlösbaren Problemen aus der Forschung von Verteilten Systemen. Dazu gehört die Unlösbarkeit von Konsensus und die unausweichliche Abwägung zwischen Verfügbarkeit und Konsistenz in einem verteilten System mit Ausfällen. Diese Arbeit trägt dazu bei, die entstehenden Lücken, welche aus diesen fundamentalen Ergebnissen resultieren, zu schließen und die vorgeschlagenen Lösungen für reale IT Dienste anwendbar zu machen. Dieses wird anhand eines dezentralen IMAP Dienstes und einer Programmierbibliothek für Webanwendungen verdeutlicht. Alle Bestandteile dieser Doktorarbeit verbinden Theorie und Praxis. Alle vorgeschlagenen Erweiterungen für bestehende Replikationssysteme werden in formalen Modellen verifiziert und prototypisch implementiert. Die Implementierungen werden außerdem mit vergleichbarer Standardsoftware, welche dem heutigen Stand der Technik entspricht, in praktischen Experimenten evaluiert.

Dualities in graphs and digraphs

Dualities in graphs and digraphs
Title Dualities in graphs and digraphs PDF eBook
Author Hatzel, Meike
Publisher Universitätsverlag der TU Berlin
Pages 294
Release 2023-05-23
Genre Computers
ISBN 3798332916

Download Dualities in graphs and digraphs Book in PDF, Epub and Kindle

In this thesis we describe dualities in directed as well as undirected graphs based on tools such as width-parameters, obstructions and substructures. We mainly focus on directed graphs and their structure. In the context of a long open conjecture that bounds the monotonicity costs of a version of the directed cops and robber game, we introduce new width-measures based on directed separations that are closely related to DAG-width. We identify a tangle-like obstruction for which we prove a duality theorem. Johnson, Reed, Robertson, Seymour and Thomas introduced the width measure directed treewidth as a generalisation of treewidth for directed graphs. We introduce a new width measure, the cyclewidth, which is parametrically equivalent to directed treewidth. Making use of the connection between directed graphs and bipartite graphs with perfect matchings we characterise the digraphs of low cyclewidth. Generalising the seminal work by Robertson and Seymour resulting in a global structure theorem for undirected graphs, there is the goal of obtaining a structure theorem, based on directed treewidth, describing the structure of the directed graphs excluding a fixed butterfly minor. Working in this direction we present a new flat wall theorem for directed graphs which we believe to provide a better base for a directed structure theorem than the existing ones. On undirected graphs we present several results on induced subgraphs in the graphs themselves or the square graph of their linegraph. These results range from general statements about all graphs to the consideration of specific graph classes such as the one with exactly two moplexes. In der vorliegenden Arbeit beschreiben wir Dualitäten in gerichteten sowie in ungerichteten Graphen basierend auf Konzepten wie Weiteparametern, Obstruktionen und Substrukturen. Der Hauptfokus der Arbeit liegt bei gerichteten Graphen und ihrer Struktur. Im Kontext einer lange offenen Vermutung, dass die Monotoniekosten einer Variante des Räuber und Gendarm Spiels für gerichtete Graphen beschränkt sind, führen wir neue Weiteparameter ein, die auf gerichteten Separationen basieren und eng mit DAG-Weite verwandt sind. Wir identifizieren Tangle-artige Obstruktionen zu diesen Weiteparametern und beweisen die Dualität zwischen diesen beiden Konzepten. Johnson, Reed, Robertson, Seymour und Thomas haben die gerichtete Baumweite als gerichtete Verallgemeinerung der Baumweite auf ungerichteten Graphen eingeführt. Wir führen einen neuen Weiteparameter, die Cyclewidth, ein, der parametrisch equivalent zur gerichteten Baumweite ist. Unter Nutzung der Verwandtschaft von gerichteten Graphen und bipartiten Graphen mit perfekten Matchings charakterisieren wir die gerichteten Graphen mit kleiner Cyclewidth. Ein einschlagendes Ergebnis in der Graphenstrukturtheorie ist das Strukturtheorem von Robertson und Seymour. Basierend darauf gibt es Anstrengungen ein solches Strukturtheorem auch für gerichtete Graphen zu finden und dafür die gerichtete Baumweite als Grundlage zu nutzen. Dieses Theorem soll die Struktur aller gerichteten Graphen beschreiben, die einen festen gerichteten Graphen als Butterflyminoren ausschließen. In diesem Kontext beweisen wir ein neues Flat-wall-theorem für gerichtete Graphen, dass unserer Erwartung nach eine bessere Basis für ein gerichtetes Strukturtheorem bietet als die bisher betrachteten Alternativen. Auf ungerichteten Graphen präsentieren wir einige Ergebnisse bezüglich induzierten Subgraphen in gegebenen Graphen oder ihren Linegraphen. Diese Ergebnisse reichen von der Betrachtung spezifischer Graphklassen, wie den Graphen mit zwei Moplexen, bis zu Ergebnissen auf der allgemeinen Klasse aller Graphen.

Elements of dynamic and 2-SAT programming: paths, trees, and cuts

Elements of dynamic and 2-SAT programming: paths, trees, and cuts
Title Elements of dynamic and 2-SAT programming: paths, trees, and cuts PDF eBook
Author Bentert, Matthias
Publisher Universitätsverlag der TU Berlin
Pages 218
Release 2021-11-18
Genre Computers
ISBN 3798332096

Download Elements of dynamic and 2-SAT programming: paths, trees, and cuts Book in PDF, Epub and Kindle

In dieser Arbeit entwickeln wir schnellere exakte Algorithmen (schneller bezüglich der Worst-Case-Laufzeit) für Spezialfälle von Graphproblemen. Diese Algorithmen beruhen größtenteils auf dynamischem Programmieren und auf 2-SAT-Programmierung. Dynamisches Programmieren beschreibt den Vorgang, ein Problem rekursiv in Unterprobleme zu zerteilen, sodass diese Unterprobleme gemeinsame Unterunterprobleme haben. Wenn diese Unterprobleme optimal gelöst wurden, dann kombiniert das dynamische Programm diese Lösungen zu einer optimalen Lösung des Ursprungsproblems. 2-SAT-Programmierung bezeichnet den Prozess, ein Problem durch eine Menge von 2-SAT-Formeln (aussagenlogische Formeln in konjunktiver Normalform, wobei jede Klausel aus maximal zwei Literalen besteht) auszudrücken. Dabei müssen erfüllende Wahrheitswertbelegungen für eine Teilmenge der 2-SAT-Formeln zu einer Lösung des Ursprungsproblems korrespondieren. Wenn eine 2-SAT-Formel erfüllbar ist, dann kann eine erfüllende Wahrheitswertbelegung in Linearzeit in der Länge der Formel berechnet werden. Wenn entsprechende 2-SAT-Formeln also in polynomieller Zeit in der Eingabegröße des Ursprungsproblems erstellt werden können, dann kann das Ursprungsproblem in polynomieller Zeit gelöst werden. Im folgenden beschreiben wir die Hauptresultate der Arbeit. Bei dem Diameter-Problem wird die größte Distanz zwischen zwei beliebigen Knoten in einem gegebenen ungerichteten Graphen gesucht. Das Ergebnis (der Durchmesser des Eingabegraphen) gehört zu den wichtigsten Parametern der Graphanalyse. In dieser Arbeit erzielen wir sowohl positive als auch negative Ergebnisse für Diameter. Wir konzentrieren uns dabei auf parametrisierte Algorithmen für Parameterkombinationen, die in vielen praktischen Anwendungen klein sind, und auf Parameter, die eine Distanz zur Trivialität messen. Bei dem Problem Length-Bounded Cut geht es darum, ob es eine Kantenmenge begrenzter Größe in einem Eingabegraphen gibt, sodass das Entfernen dieser Kanten die Distanz zwischen zwei gegebenen Knoten auf ein gegebenes Minimum erhöht. Wir bestätigen in dieser Arbeit eine Vermutung aus der wissenschaftlichen Literatur, dass Length-Bounded Cut in polynomieller Zeit in der Eingabegröße auf Einheitsintervallgraphen (Intervallgraphen, in denen jedes Intervall die gleiche Länge hat) gelöst werden kann. Der Algorithmus basiert auf dynamischem Programmieren. k-Disjoint Shortest Paths beschreibt das Problem, knotendisjunkte Pfade zwischen k gegebenen Knotenpaaren zu suchen, sodass jeder der k Pfade ein kürzester Pfad zwischen den jeweiligen Endknoten ist. Wir beschreiben ein dynamisches Programm mit einer Laufzeit n^O((k+1)!) für dieses Problem, wobei n die Anzahl der Knoten im Eingabegraphen ist. Dies zeigt, dass k-Disjoint Shortest Paths in polynomieller Zeit für jedes konstante k gelöst werden kann, was für über 20 Jahre ein ungelöstes Problem der algorithmischen Graphentheorie war. Das Problem Tree Containment fragt, ob ein gegebener phylogenetischer Baum T in einem gegebenen phylogenetischen Netzwerk N enthalten ist. Ein phylogenetisches Netzwerk (bzw. ein phylogenetischer Baum) ist ein gerichteter azyklischer Graph (bzw. ein gerichteter Baum) mit genau einer Quelle, in dem jeder Knoten höchstens eine ausgehende oder höchstens eine eingehende Kante hat und jedes Blatt eine Beschriftung trägt. Das Problem stammt aus der Bioinformatik aus dem Bereich der Suche nach dem Baums des Lebens (der Geschichte der Artenbildung). Wir führen eine neue Variante des Problems ein, die wir Soft Tree Containment nennen und die bestimmte Unsicherheitsfaktoren berücksichtigt. Wir zeigen mit Hilfe von 2-SAT-Programmierung, dass Soft Tree Containment in polynomieller Zeit gelöst werden kann, wenn N ein phylogenetischer Baum ist, in dem jeweils maximal zwei Blätter die gleiche Beschriftung tragen. Wir ergänzen dieses Ergebnis mit dem Beweis, dass Soft Tree Containment NP-schwer ist, selbst wenn N auf phylogenetische Bäume beschränkt ist, in denen jeweils maximal drei Blätter die gleiche Beschriftung tragen. Abschließend betrachten wir das Problem Reachable Object. Hierbei wird nach einer Sequenz von rationalen Tauschoperationen zwischen Agentinnen gesucht, sodass eine bestimmte Agentin ein bestimmtes Objekt erhält. Eine Tauschoperation ist rational, wenn beide an dem Tausch beteiligten Agentinnen ihr neues Objekt gegenüber dem jeweiligen alten Objekt bevorzugen. Reachable Object ist eine Verallgemeinerung des bekannten und viel untersuchten Problems Housing Market. Hierbei sind die Agentinnen in einem Graphen angeordnet und nur benachbarte Agentinnen können Objekte miteinander tauschen. Wir zeigen, dass Reachable Object NP-schwer ist, selbst wenn jede Agentin maximal drei Objekte gegenüber ihrem Startobjekt bevorzugt und dass Reachable Object polynomzeitlösbar ist, wenn jede Agentin maximal zwei Objekte gegenüber ihrem Startobjekt bevorzugt. Wir geben außerdem einen Polynomzeitalgorithmus für den Spezialfall an, in dem der Graph der Agentinnen ein Kreis ist. Dieser Polynomzeitalgorithmus basiert auf 2-SAT-Programmierung. This thesis presents faster (in terms of worst-case running times) exact algorithms for special cases of graph problems through dynamic programming and 2-SAT programming. Dynamic programming describes the procedure of breaking down a problem recursively into overlapping subproblems, that is, subproblems with common subsubproblems. Given optimal solutions to these subproblems, the dynamic program then combines them into an optimal solution for the original problem. 2-SAT programming refers to the procedure of reducing a problem to a set of 2-SAT formulas, that is, boolean formulas in conjunctive normal form in which each clause contains at most two literals. Computing whether such a formula is satisfiable (and computing a satisfying truth assignment, if one exists) takes linear time in the formula length. Hence, when satisfying truth assignments to some 2-SAT formulas correspond to a solution of the original problem and all formulas can be computed efficiently, that is, in polynomial time in the input size of the original problem, then the original problem can be solved in polynomial time. We next describe our main results. Diameter asks for the maximal distance between any two vertices in a given undirected graph. It is arguably among the most fundamental graph parameters. We provide both positive and negative parameterized results for distance-from-triviality-type parameters and parameter combinations that were observed to be small in real-world applications. In Length-Bounded Cut, we search for a bounded-size set of edges that intersects all paths between two given vertices of at most some given length. We confirm a conjecture from the literature by providing a polynomial-time algorithm for proper interval graphs which is based on dynamic programming. k-Disjoint Shortest Paths is the problem of finding (vertex-)disjoint paths between given vertex terminals such that each of these paths is a shortest path between the respective terminals. Its complexity for constant k > 2 has been an open problem for over 20 years. Using dynamic programming, we show that k-Disjoint Shortest Paths can be solved in polynomial time for each constant k. The problem Tree Containment asks whether a phylogenetic tree T is contained in a phylogenetic network N. A phylogenetic network (or tree) is a leaf-labeled single-source directed acyclic graph (or tree) in which each vertex has in-degree at most one or out-degree at most one. The problem stems from computational biology in the context of the tree of life (the history of speciation). We introduce a particular variant that resembles certain types of uncertainty in the input. We show that if each leaf label occurs at most twice in a phylogenetic tree N, then the problem can be solved in polynomial time and if labels can occur up to three times, then the problem becomes NP-hard. Lastly, Reachable Object is the problem of deciding whether there is a sequence of rational trades of objects among agents such that a given agent can obtain a certain object. A rational trade is a swap of objects between two agents where both agents profit from the swap, that is, they receive objects they prefer over the objects they trade away. This problem can be seen as a natural generalization of the well-known and well-studied Housing Market problem where the agents are arranged in a graph and only neighboring agents can trade objects. We prove a dichotomy result that states that the problem is polynomial-time solvable if each agent prefers at most two objects over its initially held object and it is NP-hard if each agent prefers at most three objects over its initially held object. We also provide a polynomial-time 2-SAT program for the case where the graph of agents is a cycle.