p-adic Numbers, p-adic Analysis, and Zeta-Functions

p-adic Numbers, p-adic Analysis, and Zeta-Functions
Title p-adic Numbers, p-adic Analysis, and Zeta-Functions PDF eBook
Author Neal Koblitz
Publisher Springer Science & Business Media
Pages 163
Release 2012-12-06
Genre Mathematics
ISBN 1461211123

Download p-adic Numbers, p-adic Analysis, and Zeta-Functions Book in PDF, Epub and Kindle

The first edition of this work has become the standard introduction to the theory of p-adic numbers at both the advanced undergraduate and beginning graduate level. This second edition includes a deeper treatment of p-adic functions in Ch. 4 to include the Iwasawa logarithm and the p-adic gamma-function, the rearrangement and addition of some exercises, the inclusion of an extensive appendix of answers and hints to the exercises, as well as numerous clarifications.

A Course in p-adic Analysis

A Course in p-adic Analysis
Title A Course in p-adic Analysis PDF eBook
Author Alain M. Robert
Publisher Springer Science & Business Media
Pages 451
Release 2013-04-17
Genre Mathematics
ISBN 1475732546

Download A Course in p-adic Analysis Book in PDF, Epub and Kindle

Discovered at the turn of the 20th century, p-adic numbers are frequently used by mathematicians and physicists. This text is a self-contained presentation of basic p-adic analysis with a focus on analytic topics. It offers many features rarely treated in introductory p-adic texts such as topological models of p-adic spaces inside Euclidian space, a special case of Hazewinkel’s functional equation lemma, and a treatment of analytic elements.

$p$-adic Analysis Compared with Real

$p$-adic Analysis Compared with Real
Title $p$-adic Analysis Compared with Real PDF eBook
Author Svetlana Katok
Publisher American Mathematical Soc.
Pages 170
Release 2007
Genre Mathematics
ISBN 082184220X

Download $p$-adic Analysis Compared with Real Book in PDF, Epub and Kindle

The book gives an introduction to $p$-adic numbers from the point of view of number theory, topology, and analysis. Compared to other books on the subject, its novelty is both a particularly balanced approach to these three points of view and an emphasis on topics accessible to undergraduates. in addition, several topics from real analysis and elementary topology which are not usually covered in undergraduate courses (totally disconnected spaces and Cantor sets, points of discontinuity of maps and the Baire Category Theorem, surjectivity of isometries of compact metric spaces) are also included in the book. They will enhance the reader's understanding of real analysis and intertwine the real and $p$-adic contexts of the book. The book is based on an advanced undergraduate course given by the author. The choice of the topic was motivated by the internal beauty of the subject of $p$-adic analysis, an unusual one in the undergraduate curriculum, and abundant opportunities to compare it with its much more familiar real counterpart. The book includes a large number of exercises. Answers, hints, and solutions for most of them appear at the end of the book. Well written, with obvious care for the reader, the book can be successfully used in a topic course or for self-study.

P-adic Analysis

P-adic Analysis
Title P-adic Analysis PDF eBook
Author Neal Koblitz
Publisher Cambridge University Press
Pages 171
Release 1980-11-28
Genre Mathematics
ISBN 0521280605

Download P-adic Analysis Book in PDF, Epub and Kindle

An introduction to recent work in the theory of numbers and its interrelation with algebraic geometry and analysis.

Introduction to $p$-adic Analytic Number Theory

Introduction to $p$-adic Analytic Number Theory
Title Introduction to $p$-adic Analytic Number Theory PDF eBook
Author M. Ram Murty
Publisher American Mathematical Soc.
Pages 162
Release 2009-02-09
Genre Mathematics
ISBN 0821847740

Download Introduction to $p$-adic Analytic Number Theory Book in PDF, Epub and Kindle

This book is an elementary introduction to $p$-adic analysis from the number theory perspective. With over 100 exercises included, it will acquaint the non-expert to the basic ideas of the theory and encourage the novice to enter this fertile field of research. The main focus of the book is the study of $p$-adic $L$-functions and their analytic properties. It begins with a basic introduction to Bernoulli numbers and continues with establishing the Kummer congruences. These congruences are then used to construct the $p$-adic analog of the Riemann zeta function and $p$-adic analogs of Dirichlet's $L$-functions. Featured is a chapter on how to apply the theory of Newton polygons to determine Galois groups of polynomials over the rational number field. As motivation for further study, the final chapter introduces Iwasawa theory.

The Riemann Zeta-Function

The Riemann Zeta-Function
Title The Riemann Zeta-Function PDF eBook
Author Anatoly A. Karatsuba
Publisher Walter de Gruyter
Pages 409
Release 2011-05-03
Genre Mathematics
ISBN 3110886146

Download The Riemann Zeta-Function Book in PDF, Epub and Kindle

The aim of the series is to present new and important developments in pure and applied mathematics. Well established in the community over two decades, it offers a large library of mathematics including several important classics. The volumes supply thorough and detailed expositions of the methods and ideas essential to the topics in question. In addition, they convey their relationships to other parts of mathematics. The series is addressed to advanced readers wishing to thoroughly study the topic. Editorial Board Lev Birbrair, Universidade Federal do Ceará, Fortaleza, Brasil Victor P. Maslov, Russian Academy of Sciences, Moscow, Russia Walter D. Neumann, Columbia University, New York, USA Markus J. Pflaum, University of Colorado, Boulder, USA Dierk Schleicher, Jacobs University, Bremen, Germany

p-adic Numbers

p-adic Numbers
Title p-adic Numbers PDF eBook
Author Fernando Q. Gouvea
Publisher Springer Science & Business Media
Pages 285
Release 2013-06-29
Genre Mathematics
ISBN 3662222787

Download p-adic Numbers Book in PDF, Epub and Kindle

p-adic numbers are of great theoretical importance in number theory, since they allow the use of the language of analysis to study problems relating toprime numbers and diophantine equations. Further, they offer a realm where one can do things that are very similar to classical analysis, but with results that are quite unusual. The book should be of use to students interested in number theory, but at the same time offers an interesting example of the many connections between different parts of mathematics. The book strives to be understandable to an undergraduate audience. Very little background has been assumed, and the presentation is leisurely. There are many problems, which should help readers who are working on their own (a large appendix with hints on the problem is included). Most of all, the book should offer undergraduates exposure to some interesting mathematics which is off the beaten track. Those who will later specialize in number theory, algebraic geometry, and related subjects will benefit more directly, but all mathematics students can enjoy the book.