Operator Algebras and Mathematical Physics

Operator Algebras and Mathematical Physics
Title Operator Algebras and Mathematical Physics PDF eBook
Author Tirthankar Bhattacharyya
Publisher Birkhäuser
Pages 207
Release 2015-09-29
Genre Mathematics
ISBN 3319181823

Download Operator Algebras and Mathematical Physics Book in PDF, Epub and Kindle

This volume gathers contributions from the International Workshop on Operator Theory and Its Applications (IWOTA) held in Bangalore, India, in December 2013. All articles were written by experts and cover a broad range of original material at the cutting edge of operator theory and its applications. Topics include multivariable operator theory, operator theory on indefinite metric spaces (Krein and Pontryagin spaces) and its applications, spectral theory with applications to differential operators, the geometry of Banach spaces, scattering and time varying linear systems, and wavelets and coherent states.

Theory of Operator Algebras I

Theory of Operator Algebras I
Title Theory of Operator Algebras I PDF eBook
Author Masamichi Takesaki
Publisher Springer Science & Business Media
Pages 424
Release 2012-12-06
Genre Mathematics
ISBN 1461261880

Download Theory of Operator Algebras I Book in PDF, Epub and Kindle

Mathematics for infinite dimensional objects is becoming more and more important today both in theory and application. Rings of operators, renamed von Neumann algebras by J. Dixmier, were first introduced by J. von Neumann fifty years ago, 1929, in [254] with his grand aim of giving a sound founda tion to mathematical sciences of infinite nature. J. von Neumann and his collaborator F. J. Murray laid down the foundation for this new field of mathematics, operator algebras, in a series of papers, [240], [241], [242], [257] and [259], during the period of the 1930s and early in the 1940s. In the introduction to this series of investigations, they stated Their solution 1 {to the problems of understanding rings of operators) seems to be essential for the further advance of abstract operator theory in Hilbert space under several aspects. First, the formal calculus with operator-rings leads to them. Second, our attempts to generalize the theory of unitary group-representations essentially beyond their classical frame have always been blocked by the unsolved questions connected with these problems. Third, various aspects of the quantum mechanical formalism suggest strongly the elucidation of this subject. Fourth, the knowledge obtained in these investigations gives an approach to a class of abstract algebras without a finite basis, which seems to differ essentially from all types hitherto investigated. Since then there has appeared a large volume of literature, and a great deal of progress has been achieved by many mathematicians.

Operator Algebras and Quantum Statistical Mechanics 1

Operator Algebras and Quantum Statistical Mechanics 1
Title Operator Algebras and Quantum Statistical Mechanics 1 PDF eBook
Author Ola Bratteli
Publisher Springer Science & Business Media
Pages 528
Release 1987
Genre Mathematics
ISBN 9783540170938

Download Operator Algebras and Quantum Statistical Mechanics 1 Book in PDF, Epub and Kindle

This is the first of two volumes presenting the theory of operator algebras with applications to quantum statistical mechanics. The authors' approach to the operator theory is to a large extent governed by the dictates of the physical applications. The book is self-contained and most proofs are presented in detail, which makes it a useful text for students with a knowledge of basic functional analysis. The introductory chapter surveys the history and justification of algebraic techniques in statistical physics and outlines the applications that have been made. The second edition contains new and improved results. The principal changes include: A more comprehensive discussion of dissipative operators and analytic elements; the positive resolution of the question of whether maximal orthogonal probability measure on the state space of C-algebra were automatically maximal along all the probability measures on the space.

Operator Algebras and Quantum Statistical Mechanics

Operator Algebras and Quantum Statistical Mechanics
Title Operator Algebras and Quantum Statistical Mechanics PDF eBook
Author Ola Bratteli
Publisher Springer Science & Business Media
Pages 544
Release 1979
Genre Mathematics
ISBN

Download Operator Algebras and Quantum Statistical Mechanics Book in PDF, Epub and Kindle

For almost two decades, this has been the classical textbook on applications of operator algebra theory to quantum statistical physics. Major changes in the new edition relate to Bose-Einstein condensation, the dynamics of the X-Y model and questions on phase transitions.

Introduction to Vertex Operator Algebras and Their Representations

Introduction to Vertex Operator Algebras and Their Representations
Title Introduction to Vertex Operator Algebras and Their Representations PDF eBook
Author James Lepowsky
Publisher Springer Science & Business Media
Pages 330
Release 2012-12-06
Genre Mathematics
ISBN 0817681868

Download Introduction to Vertex Operator Algebras and Their Representations Book in PDF, Epub and Kindle

* Introduces the fundamental theory of vertex operator algebras and its basic techniques and examples. * Begins with a detailed presentation of the theoretical foundations and proceeds to a range of applications. * Includes a number of new, original results and brings fresh perspective to important works of many other researchers in algebra, lie theory, representation theory, string theory, quantum field theory, and other areas of math and physics.

State Spaces of Operator Algebras

State Spaces of Operator Algebras
Title State Spaces of Operator Algebras PDF eBook
Author Erik M. Alfsen
Publisher Springer Science & Business Media
Pages 372
Release 2001-04-27
Genre Mathematics
ISBN 9780817638900

Download State Spaces of Operator Algebras Book in PDF, Epub and Kindle

The topic of this book is the theory of state spaces of operator algebras and their geometry. The states are of interest because they determine representations of the algebra, and its algebraic structure is in an intriguing and fascinating fashion encoded in the geometry of the state space. From the beginning the theory of operator algebras was motivated by applications to physics, but recently it has found unexpected new applica tions to various fields of pure mathematics, like foliations and knot theory, and (in the Jordan algebra case) also to Banach manifolds and infinite di mensional holomorphy. This makes it a relevant field of study for readers with diverse backgrounds and interests. Therefore this book is not intended solely for specialists in operator algebras, but also for graduate students and mathematicians in other fields who want to learn the subject. We assume that the reader starts out with only the basic knowledge taught in standard graduate courses in real and complex variables, measure theory and functional analysis. We have given complete proofs of basic results on operator algebras, so that no previous knowledge in this field is needed. For discussion of some topics, more advanced prerequisites are needed. Here we have included all necessary definitions and statements of results, but in some cases proofs are referred to standard texts. In those cases we have tried to give references to material that can be read and understood easily in the context of our book.

Geometry of State Spaces of Operator Algebras

Geometry of State Spaces of Operator Algebras
Title Geometry of State Spaces of Operator Algebras PDF eBook
Author Erik M. Alfsen
Publisher Springer Science & Business Media
Pages 470
Release 2012-12-06
Genre Mathematics
ISBN 1461200199

Download Geometry of State Spaces of Operator Algebras Book in PDF, Epub and Kindle

In this book we give a complete geometric description of state spaces of operator algebras, Jordan as well as associative. That is, we give axiomatic characterizations of those convex sets that are state spaces of C*-algebras and von Neumann algebras, together with such characterizations for the normed Jordan algebras called JB-algebras and JBW-algebras. These non associative algebras generalize C*-algebras and von Neumann algebras re spectively, and the characterization of their state spaces is not only of interest in itself, but is also an important intermediate step towards the characterization of the state spaces of the associative algebras. This book gives a complete and updated presentation of the character ization theorems of [10]' [11] and [71]. Our previous book State spaces of operator algebras: basic theory, orientations and C*-products, referenced as [AS] in the sequel, gives an account of the necessary prerequisites on C*-algebras and von Neumann algebras, as well as a discussion of the key notion of orientations of state spaces. For the convenience of the reader, we have summarized these prerequisites in an appendix which contains all relevant definitions and results (listed as (AI), (A2), ... ), with reference back to [AS] for proofs, so that this book is self-contained.