One- and Two-dimensional Infrared Spectroscopic Studies of Solution-phase Homogeneous Catalysis and Spin-forbidden Reactions

One- and Two-dimensional Infrared Spectroscopic Studies of Solution-phase Homogeneous Catalysis and Spin-forbidden Reactions
Title One- and Two-dimensional Infrared Spectroscopic Studies of Solution-phase Homogeneous Catalysis and Spin-forbidden Reactions PDF eBook
Author
Publisher
Pages
Release 2008
Genre
ISBN

Download One- and Two-dimensional Infrared Spectroscopic Studies of Solution-phase Homogeneous Catalysis and Spin-forbidden Reactions Book in PDF, Epub and Kindle

Understanding chemical reactions requires the knowledge of the elementary steps of breaking and making bonds, and often a variety of experimental techniques are needed to achieve this goal. The initial steps occur on the femto- through picosecond time-scales, requiring the use of ultrafast spectroscopic methods, while the rate-limiting steps often occur more slowly, requiring alternative techniques. Ultrafast one and two-dimensional infrared and step-scan FTIR spectroscopies are used to investigate the photochemical reactions of four organometallic complexes. The analysis leads to a detailed understanding of mechanisms that are general in nature and may be applicable to a variety of reactions.

One- and Two-dimensional Infrared Spectroscopic Studies of Solution-phase Homogeneous Catalysis and Spin-forbidden Reactions

One- and Two-dimensional Infrared Spectroscopic Studies of Solution-phase Homogeneous Catalysis and Spin-forbidden Reactions
Title One- and Two-dimensional Infrared Spectroscopic Studies of Solution-phase Homogeneous Catalysis and Spin-forbidden Reactions PDF eBook
Author Karma Rae Sawyer
Publisher
Pages 438
Release 2008
Genre
ISBN

Download One- and Two-dimensional Infrared Spectroscopic Studies of Solution-phase Homogeneous Catalysis and Spin-forbidden Reactions Book in PDF, Epub and Kindle

Unraveling Mechanisms and Quantifying Active Sites by Using In-situ and Ex-situ Infrared Spectroscopy

Unraveling Mechanisms and Quantifying Active Sites by Using In-situ and Ex-situ Infrared Spectroscopy
Title Unraveling Mechanisms and Quantifying Active Sites by Using In-situ and Ex-situ Infrared Spectroscopy PDF eBook
Author Shao-Chun Wang (Ph.D.)
Publisher
Pages 0
Release 2022
Genre
ISBN

Download Unraveling Mechanisms and Quantifying Active Sites by Using In-situ and Ex-situ Infrared Spectroscopy Book in PDF, Epub and Kindle

The molecular-level understanding of surface sites and reaction mechanisms is key for the development of the field of heterogeneous catalysis. Infrared spectroscopy, studying molecular vibrations, is widely used to investigate the structures of surface-bound species in heterogeneous catalysts. Heterogeneous catalytic reactions proceed via adsorption of the reagent(s), surface reaction, and desorption of the product(s), leading to complex in-situ or operando IR spectra. However, the information of active species is usually concealed by spectator species which do not participate in the catalytic cycle. Modulation excitation spectroscopy serves as a tool to increase the signal-to-noise level and to differentiate between the active species and spectator species during a catalytic reaction. In Chapter 2, we report on the use of diffuse reflectance FT-IR spectroscopy (DRIFTS) with a modulation excitation (ME) approach followed by mass spectrometry (MS) to investigate the reaction of ethanol to n-butanol over hydroxyapatite (HAP). The approach allows for a vibrational characterization of the active surface species and the formulation of a consistent mechanism. Based on our experimental observations, Ca2+/OH- can be put forward as the main active site for the aldol condensation. POH/OH- acid-base pair is proposed as the active site for the Meerwein-Ponndorf-Verley (MPV) direct hydrogen transfer for the n-butanol formation.In Chapter 3, we describe the use of NO as a probe molecule in low-temperature IR spectroscopy to identify and quantify copper species in the state-of-the-art commercial NOx abatement catalyst, Cu ion-exchanged chabazite zeolite. While bulk analysis can reveal the total concentration of copper in the catalyst, the amount of ion-exchanged copper is more difficult to determine due to the appearance of non-exchanged Cu species, CuOx. Molecules such as carbon monoxide (CO) and nitric oxide (NO) are routinely used as a probe to investigate the copper speciation in order to draw structure-activity correlations. However, NO is easy to decompose and reacts with copper species at ambient temperature, causing complexity in IR spectra. Here, we develop NO adsorption IR spectroscopy at cryogenic conditions to avoid the undesired reactions. The observed IR peaks for Cu+(NO)2 and Cu2+(NO) species can be used to quantify the amount of exchanged copper species in a broad range of samples, including a commercial wash-coated honeycomb. Calibration curves for Cu+(NO)2 and Cu2+(NO) are determined for copper loadings up to 3.99 wt% with silica to alumina ratio of 16-22 and quantitative agreement with complementary hydrogen temperature-programmed reduction (H2-TPR) results is established. Our methodology allows us to identify different Cu species in Cu-CHA, such as Z2Cu(II), Z1Cu(II)OH and Cu dimers, based on their distinct IR signatures. In addition, the perturbed T-O-T framework vibration - characterized at 400 oC - can also be used as a complementary method to quantify Z2Cu(II) species. This work demonstrates that cryogenic NO-IR is a facile technique to identify and quantify the exchanged copper species in Cu-CHA to accelerate catalyst development. In chapter 4, we extend the NO-IR method to characterize the ion-exchanged species in Cu-ZSM-5 and Fe-CHA. The adsorbed NO shows distinct IR characteristics for exchanged copper species at 1914 cm-1 and the calibration curve for Cu2+ species for estimating high Cu-loading Cu-ZSM-5 is determined. In the case of Fe-CHA, the NO-IR is not efficient due to the formation of NO monomer and trimer on copper species, causing complexity in the IR spectra. Carbon monoxide (CO) is then applied as an alternative probe molecule. The results of CO-IR for Fe-CHA showed more defined IR features for Fe2+(CO) than in NO-IR. With this toolbox in hand, the calibration curve for the concentration of Fe2+ in Fe-CHA by CO-IR is then established. Perspectives for future research are outlined in Chapter 5, the preliminary results for a Cu-Ga binary catalyst for methanol production from CO2 hydrogenation was tested by using the DRIFTS cell with ambient pressure. However, due to thermodynamic limitation, the reaction favors reverse water gas shift under ambient pressure. The newly designed operando DRIFTS cell allows to minimize the exchange time of concentration modulation and have the capability of holding at high pressure (> 25 bar) and high temperature (> 250 oC) which is suitable for investigating the heterogeneous catalysts for CO2 hydrogenation. With the well-establish tool, we will be able to investigate surface-bound species and reaction mechanisms under working conditions by IR spectroscopy. Not only can gas phase catalytic reactions be studied by DRIFTS, but heterogeneous catalytic reactions in liquid phase can also be investigated by attenuation total reflection IR spectroscopy (ATR-IR). Competitive adsorption with reactants and solvents is especially important in the case of (micro-) porous catalysts where the composition inside the pores can be very different from the bulk due to size exclusion and confinement effects. ATR-IR with the ME approach can shed light on mechanistic insights for liquid phase reactions. Lastly, with the success of low temperature NO and CO-IR method development, characterizing different metal ion-exchanged zeolites for various applications such as methane to methanol, syngas to dimethyl ether, and NOx abatement is crucial for structure-reactivity correlation. Ultimately, low temperature NO and CO-IR can be established as facile techniques to identify and quantify metal ion species located in different types of zeolites.

Physics Briefs

Physics Briefs
Title Physics Briefs PDF eBook
Author
Publisher
Pages 1454
Release 1991
Genre Physics
ISBN

Download Physics Briefs Book in PDF, Epub and Kindle

Dissertation Abstracts International

Dissertation Abstracts International
Title Dissertation Abstracts International PDF eBook
Author
Publisher
Pages 972
Release 2002
Genre Dissertations, Academic
ISBN

Download Dissertation Abstracts International Book in PDF, Epub and Kindle

Biological NMR Spectroscopy

Biological NMR Spectroscopy
Title Biological NMR Spectroscopy PDF eBook
Author John L. Markley
Publisher Oxford University Press
Pages 375
Release 1997-01-30
Genre Science
ISBN 0195357426

Download Biological NMR Spectroscopy Book in PDF, Epub and Kindle

This book presents a critical assessment of progress on the use of nuclear magnetic resonance spectroscopy to determine the structure of proteins, including brief reviews of the history of the field along with coverage of current clinical and in vivo applications. The book, in honor of Oleg Jardetsky, one of the pioneers of the field, is edited by two of the most highly respected investigators using NMR, and features contributions by most of the leading workers in the field. It will be valued as a landmark publication that presents the state-of-the-art perspectives regarding one of today's most important technologies.

Nuclear Science Abstracts

Nuclear Science Abstracts
Title Nuclear Science Abstracts PDF eBook
Author
Publisher
Pages 894
Release 1970-10
Genre Nuclear energy
ISBN

Download Nuclear Science Abstracts Book in PDF, Epub and Kindle