Embeddings in Manifolds

Embeddings in Manifolds
Title Embeddings in Manifolds PDF eBook
Author Robert J. Daverman
Publisher American Mathematical Soc.
Pages 496
Release 2009-10-14
Genre Mathematics
ISBN 0821836978

Download Embeddings in Manifolds Book in PDF, Epub and Kindle

A topological embedding is a homeomorphism of one space onto a subspace of another. The book analyzes how and when objects like polyhedra or manifolds embed in a given higher-dimensional manifold. The main problem is to determine when two topological embeddings of the same object are equivalent in the sense of differing only by a homeomorphism of the ambient manifold. Knot theory is the special case of spheres smoothly embedded in spheres; in this book, much more general spaces and much more general embeddings are considered. A key aspect of the main problem is taming: when is a topological embedding of a polyhedron equivalent to a piecewise linear embedding? A central theme of the book is the fundamental role played by local homotopy properties of the complement in answering this taming question. The book begins with a fresh description of the various classic examples of wild embeddings (i.e., embeddings inequivalent to piecewise linear embeddings). Engulfing, the fundamental tool of the subject, is developed next. After that, the study of embeddings is organized by codimension (the difference between the ambient dimension and the dimension of the embedded space). In all codimensions greater than two, topological embeddings of compacta are approximated by nicer embeddings, nice embeddings of polyhedra are tamed, topological embeddings of polyhedra are approximated by piecewise linear embeddings, and piecewise linear embeddings are locally unknotted. Complete details of the codimension-three proofs, including the requisite piecewise linear tools, are provided. The treatment of codimension-two embeddings includes a self-contained, elementary exposition of the algebraic invariants needed to construct counterexamples to the approximation and existence of embeddings. The treatment of codimension-one embeddings includes the locally flat approximation theorem for manifolds as well as the characterization of local flatness in terms of local homotopy properties.

American Doctoral Dissertations

American Doctoral Dissertations
Title American Doctoral Dissertations PDF eBook
Author
Publisher
Pages 490
Release 1970
Genre Dissertation abstracts
ISBN

Download American Doctoral Dissertations Book in PDF, Epub and Kindle

Nonlinear Functional Analysis

Nonlinear Functional Analysis
Title Nonlinear Functional Analysis PDF eBook
Author Jacob T. Schwartz
Publisher CRC Press
Pages 248
Release 1969
Genre Mathematics
ISBN 9780677015002

Download Nonlinear Functional Analysis Book in PDF, Epub and Kindle

Notices of the American Mathematical Society

Notices of the American Mathematical Society
Title Notices of the American Mathematical Society PDF eBook
Author American Mathematical Society
Publisher
Pages 1324
Release 1977
Genre Electronic journals
ISBN

Download Notices of the American Mathematical Society Book in PDF, Epub and Kindle

Contains articles of significant interest to mathematicians, including reports on current mathematical research.

Shape Theory and Geometric Topology

Shape Theory and Geometric Topology
Title Shape Theory and Geometric Topology PDF eBook
Author S. Mardesic
Publisher Springer
Pages 270
Release 2006-11-14
Genre Mathematics
ISBN 3540387498

Download Shape Theory and Geometric Topology Book in PDF, Epub and Kindle

A Concise Course in Algebraic Topology

A Concise Course in Algebraic Topology
Title A Concise Course in Algebraic Topology PDF eBook
Author J. P. May
Publisher University of Chicago Press
Pages 262
Release 1999-09
Genre Mathematics
ISBN 9780226511832

Download A Concise Course in Algebraic Topology Book in PDF, Epub and Kindle

Algebraic topology is a basic part of modern mathematics, and some knowledge of this area is indispensable for any advanced work relating to geometry, including topology itself, differential geometry, algebraic geometry, and Lie groups. This book provides a detailed treatment of algebraic topology both for teachers of the subject and for advanced graduate students in mathematics either specializing in this area or continuing on to other fields. J. Peter May's approach reflects the enormous internal developments within algebraic topology over the past several decades, most of which are largely unknown to mathematicians in other fields. But he also retains the classical presentations of various topics where appropriate. Most chapters end with problems that further explore and refine the concepts presented. The final four chapters provide sketches of substantial areas of algebraic topology that are normally omitted from introductory texts, and the book concludes with a list of suggested readings for those interested in delving further into the field.

Differential Topology

Differential Topology
Title Differential Topology PDF eBook
Author Victor Guillemin
Publisher American Mathematical Soc.
Pages 242
Release 2010
Genre Mathematics
ISBN 0821851934

Download Differential Topology Book in PDF, Epub and Kindle

Differential Topology provides an elementary and intuitive introduction to the study of smooth manifolds. In the years since its first publication, Guillemin and Pollack's book has become a standard text on the subject. It is a jewel of mathematical exposition, judiciously picking exactly the right mixture of detail and generality to display the richness within. The text is mostly self-contained, requiring only undergraduate analysis and linear algebra. By relying on a unifying idea--transversality--the authors are able to avoid the use of big machinery or ad hoc techniques to establish the main results. In this way, they present intelligent treatments of important theorems, such as the Lefschetz fixed-point theorem, the Poincaré-Hopf index theorem, and Stokes theorem. The book has a wealth of exercises of various types. Some are routine explorations of the main material. In others, the students are guided step-by-step through proofs of fundamental results, such as the Jordan-Brouwer separation theorem. An exercise section in Chapter 4 leads the student through a construction of de Rham cohomology and a proof of its homotopy invariance. The book is suitable for either an introductory graduate course or an advanced undergraduate course.