On the Geometric Side of the Arthur Trace Formula for the Symplectic Group of Rank 2

On the Geometric Side of the Arthur Trace Formula for the Symplectic Group of Rank 2
Title On the Geometric Side of the Arthur Trace Formula for the Symplectic Group of Rank 2 PDF eBook
Author Werner Hoffmann
Publisher American Mathematical Soc.
Pages 100
Release 2018-10-03
Genre Mathematics
ISBN 1470431025

Download On the Geometric Side of the Arthur Trace Formula for the Symplectic Group of Rank 2 Book in PDF, Epub and Kindle

The authors study the non-semisimple terms in the geometric side of the Arthur trace formula for the split symplectic similitude group and the split symplectic group of rank over any algebraic number field. In particular, they express the global coefficients of unipotent orbital integrals in terms of Dedekind zeta functions, Hecke -functions, and the Shintani zeta function for the space of binary quadratic forms.

Geometric Aspects of the Trace Formula

Geometric Aspects of the Trace Formula
Title Geometric Aspects of the Trace Formula PDF eBook
Author Werner Müller
Publisher Springer
Pages 461
Release 2018-10-11
Genre Mathematics
ISBN 3319948334

Download Geometric Aspects of the Trace Formula Book in PDF, Epub and Kindle

The second of three volumes devoted to the study of the trace formula, these proceedings focus on automorphic representations of higher rank groups. Based on research presented at the 2016 Simons Symposium on Geometric Aspects of the Trace Formula that took place in Schloss Elmau, Germany, the volume contains both original research articles and articles that synthesize current knowledge and future directions in the field. The articles discuss topics such as the classification problem of representations of reductive groups, the structure of Langlands and Arthur packets, interactions with geometric representation theory, and conjectures on the global automorphic spectrum. Suitable for both graduate students and researchers, this volume presents the latest research in the field. Readers of the first volume Families of Automorphic Forms and the Trace Formula will find this a natural continuation of the study of the trace formula.

Families of Automorphic Forms and the Trace Formula

Families of Automorphic Forms and the Trace Formula
Title Families of Automorphic Forms and the Trace Formula PDF eBook
Author Werner Müller
Publisher Springer
Pages 581
Release 2016-09-20
Genre Mathematics
ISBN 3319414240

Download Families of Automorphic Forms and the Trace Formula Book in PDF, Epub and Kindle

Featuring the work of twenty-three internationally-recognized experts, this volume explores the trace formula, spectra of locally symmetric spaces, p-adic families, and other recent techniques from harmonic analysis and representation theory. Each peer-reviewed submission in this volume, based on the Simons Foundation symposium on families of automorphic forms and the trace formula held in Puerto Rico in January-February 2014, is the product of intensive research collaboration by the participants over the course of the seven-day workshop. The goal of each session in the symposium was to bring together researchers with diverse specialties in order to identify key difficulties as well as fruitful approaches being explored in the field. The respective themes were counting cohomological forms, p-adic trace formulas, Hecke fields, slopes of modular forms, and orbital integrals.

Flat Rank Two Vector Bundles on Genus Two Curves

Flat Rank Two Vector Bundles on Genus Two Curves
Title Flat Rank Two Vector Bundles on Genus Two Curves PDF eBook
Author Viktoria Heu
Publisher American Mathematical Soc.
Pages 116
Release 2019-06-10
Genre Mathematics
ISBN 1470435667

Download Flat Rank Two Vector Bundles on Genus Two Curves Book in PDF, Epub and Kindle

The authors study the moduli space of trace-free irreducible rank 2 connections over a curve of genus 2 and the forgetful map towards the moduli space of underlying vector bundles (including unstable bundles), for which they compute a natural Lagrangian rational section. As a particularity of the genus case, connections as above are invariant under the hyperelliptic involution: they descend as rank logarithmic connections over the Riemann sphere. The authors establish explicit links between the well-known moduli space of the underlying parabolic bundles with the classical approaches by Narasimhan-Ramanan, Tyurin and Bertram. This allows the authors to explain a certain number of geometric phenomena in the considered moduli spaces such as the classical -configuration of the Kummer surface. The authors also recover a Poincaré family due to Bolognesi on a degree 2 cover of the Narasimhan-Ramanan moduli space. They explicitly compute the Hitchin integrable system on the moduli space of Higgs bundles and compare the Hitchin Hamiltonians with those found by van Geemen-Previato. They explicitly describe the isomonodromic foliation in the moduli space of vector bundles with -connection over curves of genus 2 and prove the transversality of the induced flow with the locus of unstable bundles.

Measure and Capacity of Wandering Domains in Gevrey Near-Integrable Exact Symplectic Systems

Measure and Capacity of Wandering Domains in Gevrey Near-Integrable Exact Symplectic Systems
Title Measure and Capacity of Wandering Domains in Gevrey Near-Integrable Exact Symplectic Systems PDF eBook
Author Laurent Lazzarini
Publisher American Mathematical Soc.
Pages 122
Release 2019-02-21
Genre Mathematics
ISBN 147043492X

Download Measure and Capacity of Wandering Domains in Gevrey Near-Integrable Exact Symplectic Systems Book in PDF, Epub and Kindle

A wandering domain for a diffeomorphism of is an open connected set such that for all . The authors endow with its usual exact symplectic structure. An integrable diffeomorphism, i.e., the time-one map of a Hamiltonian which depends only on the action variables, has no nonempty wandering domains. The aim of this paper is to estimate the size (measure and Gromov capacity) of wandering domains in the case of an exact symplectic perturbation of , in the analytic or Gevrey category. Upper estimates are related to Nekhoroshev theory; lower estimates are related to examples of Arnold diffusion. This is a contribution to the “quantitative Hamiltonian perturbation theory” initiated in previous works on the optimality of long term stability estimates and diffusion times; the emphasis here is on discrete systems because this is the natural setting to study wandering domains.

Covering Dimension of C*-Algebras and 2-Coloured Classification

Covering Dimension of C*-Algebras and 2-Coloured Classification
Title Covering Dimension of C*-Algebras and 2-Coloured Classification PDF eBook
Author Joan Bosa
Publisher American Mathematical Soc.
Pages 112
Release 2019-02-21
Genre Mathematics
ISBN 1470434709

Download Covering Dimension of C*-Algebras and 2-Coloured Classification Book in PDF, Epub and Kindle

The authors introduce the concept of finitely coloured equivalence for unital -homomorphisms between -algebras, for which unitary equivalence is the -coloured case. They use this notion to classify -homomorphisms from separable, unital, nuclear -algebras into ultrapowers of simple, unital, nuclear, -stable -algebras with compact extremal trace space up to -coloured equivalence by their behaviour on traces; this is based on a -coloured classification theorem for certain order zero maps, also in terms of tracial data. As an application the authors calculate the nuclear dimension of non-AF, simple, separable, unital, nuclear, -stable -algebras with compact extremal trace space: it is 1. In the case that the extremal trace space also has finite topological covering dimension, this confirms the remaining open implication of the Toms-Winter conjecture. Inspired by homotopy-rigidity theorems in geometry and topology, the authors derive a “homotopy equivalence implies isomorphism” result for large classes of -algebras with finite nuclear dimension.

An SO(3)-Monopole Cobordism Formula Relating Donaldson and Seiberg-Witten Invariants

An SO(3)-Monopole Cobordism Formula Relating Donaldson and Seiberg-Witten Invariants
Title An SO(3)-Monopole Cobordism Formula Relating Donaldson and Seiberg-Witten Invariants PDF eBook
Author Paul Feehan
Publisher American Mathematical Soc.
Pages 254
Release 2019-01-08
Genre Mathematics
ISBN 147041421X

Download An SO(3)-Monopole Cobordism Formula Relating Donaldson and Seiberg-Witten Invariants Book in PDF, Epub and Kindle

The authors prove an analogue of the Kotschick–Morgan Conjecture in the context of monopoles, obtaining a formula relating the Donaldson and Seiberg–Witten invariants of smooth four-manifolds using the -monopole cobordism. The main technical difficulty in the -monopole program relating the Seiberg–Witten and Donaldson invariants has been to compute intersection pairings on links of strata of reducible monopoles, namely the moduli spaces of Seiberg–Witten monopoles lying in lower-level strata of the Uhlenbeck compactification of the moduli space of monopoles. In this monograph, the authors prove—modulo a gluing theorem which is an extension of their earlier work—that these intersection pairings can be expressed in terms of topological data and Seiberg–Witten invariants of the four-manifold. Their proofs that the -monopole cobordism yields both the Superconformal Simple Type Conjecture of Moore, Mariño, and Peradze and Witten's Conjecture in full generality for all closed, oriented, smooth four-manifolds with and odd appear in earlier works.