Moving Interfaces and Quasilinear Parabolic Evolution Equations
Title | Moving Interfaces and Quasilinear Parabolic Evolution Equations PDF eBook |
Author | Jan Prüss |
Publisher | Birkhäuser |
Pages | 618 |
Release | 2016-07-25 |
Genre | Mathematics |
ISBN | 3319276980 |
In this monograph, the authors develop a comprehensive approach for the mathematical analysis of a wide array of problems involving moving interfaces. It includes an in-depth study of abstract quasilinear parabolic evolution equations, elliptic and parabolic boundary value problems, transmission problems, one- and two-phase Stokes problems, and the equations of incompressible viscous one- and two-phase fluid flows. The theory of maximal regularity, an essential element, is also fully developed. The authors present a modern approach based on powerful tools in classical analysis, functional analysis, and vector-valued harmonic analysis. The theory is applied to problems in two-phase fluid dynamics and phase transitions, one-phase generalized Newtonian fluids, nematic liquid crystal flows, Maxwell-Stefan diffusion, and a variety of geometric evolution equations. The book also includes a discussion of the underlying physical and thermodynamic principles governing the equations of fluid flows and phase transitions, and an exposition of the geometry of moving hypersurfaces.
Analysis in Banach Spaces
Title | Analysis in Banach Spaces PDF eBook |
Author | Tuomas Hytönen |
Publisher | Springer Nature |
Pages | 839 |
Release | 2024-01-08 |
Genre | Mathematics |
ISBN | 3031465989 |
This third volume of Analysis in Banach Spaces offers a systematic treatment of Banach space-valued singular integrals, Fourier transforms, and function spaces. It further develops and ramifies the theory of functional calculus from Volume II and describes applications of these new notions and tools to the problem of maximal regularity of evolution equations. The exposition provides a unified treatment of a large body of results, much of which has previously only been available in the form of research papers. Some of the more classical topics are presented in a novel way using modern techniques amenable to a vector-valued treatment. Thanks to its accessible style with complete and detailed proofs, this book will be an invaluable reference for researchers interested in functional analysis, harmonic analysis, and the operator-theoretic approach to deterministic and stochastic evolution equations.
Mathematical Analysis of the Navier-Stokes Equations
Title | Mathematical Analysis of the Navier-Stokes Equations PDF eBook |
Author | Matthias Hieber |
Publisher | Springer Nature |
Pages | 471 |
Release | 2020-04-28 |
Genre | Mathematics |
ISBN | 3030362264 |
This book collects together a unique set of articles dedicated to several fundamental aspects of the Navier–Stokes equations. As is well known, understanding the mathematical properties of these equations, along with their physical interpretation, constitutes one of the most challenging questions of applied mathematics. Indeed, the Navier-Stokes equations feature among the Clay Mathematics Institute's seven Millennium Prize Problems (existence of global in time, regular solutions corresponding to initial data of unrestricted magnitude). The text comprises three extensive contributions covering the following topics: (1) Operator-Valued H∞-calculus, R-boundedness, Fourier multipliers and maximal Lp-regularity theory for a large, abstract class of quasi-linear evolution problems with applications to Navier–Stokes equations and other fluid model equations; (2) Classical existence, uniqueness and regularity theorems of solutions to the Navier–Stokes initial-value problem, along with space-time partial regularity and investigation of the smoothness of the Lagrangean flow map; and (3) A complete mathematical theory of R-boundedness and maximal regularity with applications to free boundary problems for the Navier–Stokes equations with and without surface tension. Offering a general mathematical framework that could be used to study fluid problems and, more generally, a wide class of abstract evolution equations, this volume is aimed at graduate students and researchers who want to become acquainted with fundamental problems related to the Navier–Stokes equations.
Mathematical Analysis in Fluid Mechanics
Title | Mathematical Analysis in Fluid Mechanics PDF eBook |
Author | Raphaël Danchin |
Publisher | American Mathematical Soc. |
Pages | 254 |
Release | 2018-06-26 |
Genre | Mathematics |
ISBN | 1470436469 |
This volume contains the proceedings of the International Conference on Vorticity, Rotation and Symmetry (IV)—Complex Fluids and the Issue of Regularity, held from May 8–12, 2017, in Luminy, Marseille, France. The papers cover topics in mathematical fluid mechanics ranging from the classical regularity issue for solutions of the 3D Navier-Stokes system to compressible and non-Newtonian fluids, MHD flows and mixtures of fluids. Topics of different kinds of solutions, boundary conditions, and interfaces are also discussed.
Mathematical Analysis and Applications
Title | Mathematical Analysis and Applications PDF eBook |
Author | Hari Mohan Srivastava |
Publisher | MDPI |
Pages | 221 |
Release | 2019-01-14 |
Genre | Mathematics |
ISBN | 3038974005 |
This book is a printed edition of the Special Issue "Mathematical Analysis and Applications" that was published in Axioms
Collected Papers in Honor of Yoshihiro Shibata
Title | Collected Papers in Honor of Yoshihiro Shibata PDF eBook |
Author | Tohru Ozawa |
Publisher | Springer Nature |
Pages | 396 |
Release | 2023-01-01 |
Genre | Mathematics |
ISBN | 3031192524 |
Yoshihiro Shibata has made many significant contributions to the area of mathematical fluid mechanics over the course of his illustrious career, including landmark work on the Navier-Stokes equations. The papers collected here — on the occasion of his 70th birthday — are written by world-renowned researchers and celebrate his decades of outstanding achievements.
Fluids Under Pressure
Title | Fluids Under Pressure PDF eBook |
Author | Tomáš Bodnár |
Publisher | Springer Nature |
Pages | 647 |
Release | 2020-04-30 |
Genre | Mathematics |
ISBN | 3030396398 |
This contributed volume is based on talks given at the August 2016 summer school “Fluids Under Pressure,” held in Prague as part of the “Prague-Sum” series. Written by experts in their respective fields, chapters explore the complex role that pressure plays in physics, mathematical modeling, and fluid flow analysis. Specific topics covered include: Oceanic and atmospheric dynamics Incompressible flows Viscous compressible flows Well-posedness of the Navier-Stokes equations Weak solutions to the Navier-Stokes equations Fluids Under Pressure will be a valuable resource for graduate students and researchers studying fluid flow dynamics.