On Hilbert-Type and Hardy-Type Integral Inequalities and Applications

On Hilbert-Type and Hardy-Type Integral Inequalities and Applications
Title On Hilbert-Type and Hardy-Type Integral Inequalities and Applications PDF eBook
Author Bicheng Yang
Publisher Springer Nature
Pages 152
Release 2019-09-25
Genre Mathematics
ISBN 3030292681

Download On Hilbert-Type and Hardy-Type Integral Inequalities and Applications Book in PDF, Epub and Kindle

This book is aimed toward graduate students and researchers in mathematics, physics and engineering interested in the latest developments in analytic inequalities, Hilbert-Type and Hardy-Type integral inequalities, and their applications. Theories, methods, and techniques of real analysis and functional analysis are applied to equivalent formulations of Hilbert-type inequalities, Hardy-type integral inequalities as well as their parameterized reverses. Special cases of these integral inequalities across an entire plane are considered and explained. Operator expressions with the norm and some particular analytic inequalities are detailed through several lemmas and theorems to provide an extensive account of inequalities and operators.

On Hilbert-Type and Hardy-Type Integral Inequalities and Applications

On Hilbert-Type and Hardy-Type Integral Inequalities and Applications
Title On Hilbert-Type and Hardy-Type Integral Inequalities and Applications PDF eBook
Author Bicheng Yang
Publisher Springer
Pages 145
Release 2019-09-30
Genre Mathematics
ISBN 9783030292676

Download On Hilbert-Type and Hardy-Type Integral Inequalities and Applications Book in PDF, Epub and Kindle

This book is aimed toward graduate students and researchers in mathematics, physics and engineering interested in the latest developments in analytic inequalities, Hilbert-Type and Hardy-Type integral inequalities, and their applications. Theories, methods, and techniques of real analysis and functional analysis are applied to equivalent formulations of Hilbert-type inequalities, Hardy-type integral inequalities as well as their parameterized reverses. Special cases of these integral inequalities across an entire plane are considered and explained. Operator expressions with the norm and some particular analytic inequalities are detailed through several lemmas and theorems to provide an extensive account of inequalities and operators.

HILBERT-TYPE AND HARDY-TYPE INTEGRAL INEQUALITIES IN THE WHOLE PLANE

HILBERT-TYPE AND HARDY-TYPE INTEGRAL INEQUALITIES IN THE WHOLE PLANE
Title HILBERT-TYPE AND HARDY-TYPE INTEGRAL INEQUALITIES IN THE WHOLE PLANE PDF eBook
Author Bicheng Yang
Publisher Scientific Research Publishing, Inc. USA
Pages 162
Release 2022-07-19
Genre Antiques & Collectibles
ISBN 1649974094

Download HILBERT-TYPE AND HARDY-TYPE INTEGRAL INEQUALITIES IN THE WHOLE PLANE Book in PDF, Epub and Kindle

Hilbert-type inequalities including Hilbert’s inequalities (built-in 1908), Hardy-Hilbert-type inequalities (built-in 1934), and Yang-Hilbert-type inequalities (built-in 1998) played an important role in analysis and their applications, which are mainly divided into three classes of integral, discrete and half-discrete. In recent twenty years, there are many advances in research on Hilbert-type inequalities, especially in Yang-Hilbert-type inequalities. In this book, applying the weight functions, the parameterized idea, and the techniques of real analysis and functional analysis, we provide three kinds of Hilbert-type and Hardy-type integral inequalities in the whole plane as well as their reverses with parameters, which are extensions of Hilbert-type and Hardy-type integral inequalities in the first quarter. The equivalent forms, the operator expressions, and some equivalent statements of the best possible constant factors related to several parameters are considered. The lemmas and theorems provide an extensive account of these kinds of integral inequalities and operators. There are seven chapters in this book. In Chapter 1, we introduce some recent developments of Hilbert-type integral, discrete, and half-discrete inequalities. In Chapters 2-3, by using the weight function and real analysis, some new Hilbert-type and Hardy-type integral inequalities in the whole plane with the non-homogeneous kernel are given, and the cases of the homogeneous kernel are deduced. The equivalent forms and some equivalent statements of the best possible constant factors related to several parameters are obtained. We also consider the operator expressions as well as the reverses. In Chapters 4-7, the other two kinds of Hilbert-type and Hardy-type integral inequalities in the whole plane are also considered. We hope that this monograph will prove to be useful especially to graduate students of mathematics, physics, and engineering sciences.

On Extended Hardy-hilbert Integral Inequalities And Applications

On Extended Hardy-hilbert Integral Inequalities And Applications
Title On Extended Hardy-hilbert Integral Inequalities And Applications PDF eBook
Author Bicheng Yang
Publisher World Scientific
Pages 203
Release 2023-02-13
Genre Mathematics
ISBN 9811267111

Download On Extended Hardy-hilbert Integral Inequalities And Applications Book in PDF, Epub and Kindle

Hilbert-type inequalities, including Hilbert's inequalities proved in 1908, Hardy-Hilbert-type inequalities proved in 1934, and Yang-Hilbert-type inequalities first proved around 1998, play an important role in analysis and its applications. These inequalities are mainly divided in three classes: integral, discrete and half-discrete. During the last twenty years, there have been many research advances on Hilbert-type inequalities, and especially on Yang-Hilbert-type inequalities.In the present monograph, applying weight functions, the idea of parametrization as well as techniques of real analysis and functional analysis, we prove some new Hilbert-type integral inequalities as well as their reverses with parameters. These inequalities constitute extensions of the well-known Hardy-Hilbert integral inequality. The equivalent forms and some equivalent statements of the best possible constant factors associated with several parameters are considered. Furthermore, we also obtain the operator expressions with the norm and some particular inequalities involving the Riemann-zeta function and the Hurwitz-zeta function. In the form of applications, by means of the beta function and the gamma function, we use the extended Hardy-Hilbert integral inequalities to consider several Hilbert-type integral inequalities involving derivative functions and upper limit functions. In the last chapter, we consider the case of Hardy-type integral inequalities. The lemmas and theorems within provide an extensive account of these kinds of integral inequalities and operators.Efforts have been made for this monograph hopefully to be useful, especially to graduate students of mathematics, physics and engineering, as well as researchers in these domains.

A Kind of Half-Discrete Hardy-Hilbert-Type Inequalities Involving Several Applications

A Kind of Half-Discrete Hardy-Hilbert-Type Inequalities Involving Several Applications
Title A Kind of Half-Discrete Hardy-Hilbert-Type Inequalities Involving Several Applications PDF eBook
Author CV-Bicheng Yang
Publisher Scientific Research Publishing, Inc. USA
Pages 189
Release 2023-12-22
Genre Antiques & Collectibles
ISBN 1649977778

Download A Kind of Half-Discrete Hardy-Hilbert-Type Inequalities Involving Several Applications Book in PDF, Epub and Kindle

In this book, applying the weight functions, the idea of introduced parameters and the techniques of real analysis and functional analysis, we provide a new kind of half-discrete Hilbert-type inequalities named in Mulholland-type inequality. Then, we consider its several applications involving the derivative function of higher-order or the multiple upper limit function. Some new reverses with the partial sums are obtained. We also consider some half-discrete Hardy-Hilbert’s inequalities with two internal variables involving one derivative function or one upper limit function in the last chapter. The lemmas and theorems provide an extensive account of these kinds of half-discrete inequalities and operators.

Hilbert-Type Integral Inequalities

Hilbert-Type Integral Inequalities
Title Hilbert-Type Integral Inequalities PDF eBook
Author Bicheng Yang
Publisher Bentham Science Publishers
Pages 130
Release 2010-04-02
Genre Mathematics
ISBN 1608050556

Download Hilbert-Type Integral Inequalities Book in PDF, Epub and Kindle

"Hilbert-type integral inequalities, including the well known Hilbert's integral inequality published in 1908, are important in analysis and its applications. This well organized handbook covers the newest methods of weight functions and most important rec"

Hilbert-Type Inequalities: Operators, Compositions and Extensions

Hilbert-Type Inequalities: Operators, Compositions and Extensions
Title Hilbert-Type Inequalities: Operators, Compositions and Extensions PDF eBook
Author Bicheng Yang
Publisher Scientific Research Publishing, Inc. USA
Pages 410
Release 2020-09-25
Genre Antiques & Collectibles
ISBN 1618969498

Download Hilbert-Type Inequalities: Operators, Compositions and Extensions Book in PDF, Epub and Kindle

Hilbert-type inequalities include Hilbert's inequalities, Hardy-Hilbert-type inequalities and Yang-Hilbert-type inequalities, which are important in Analysis and its applications.They are mainly divided three kinds of integral, discrete and half-discrete.In recent twenty years, there are many advances in research on Hilbert-type inequalities,especially in Yang-Hilbert-type inequalities. In this book, by using the way of weight functions, the parameterized idea and technique of Real and Functional Analysis, we introduce multi-parameters and provide three kinds of double Hilbert-type inequalities with the general measurable kernels and the best possible constant factors. The equivalent forms, the reverses and some particular inequalities are obtained. Furthermore, the operator expressions with the norm, a large number of examples on the norm, some composition formulas of the operators, and three kinds of compositional inequalities with the best possible constant factors are considered. The theory of double Hilbert-type inequalities and operators are almost built. The lemmas and theorems provide an extensive account of these kinds of inequalities and operators.