Chern-Simons Theory, Matrix Models, and Topological Strings
Title | Chern-Simons Theory, Matrix Models, and Topological Strings PDF eBook |
Author | Marcos Marino |
Publisher | Oxford University Press |
Pages | 210 |
Release | 2005-09-22 |
Genre | Science |
ISBN | 0191524530 |
In recent years, the old idea that gauge theories and string theories are equivalent has been implemented and developed in various ways, and there are by now various models where the string theory / gauge theory correspondence is at work. One of the most important examples of this correspondence relates Chern-Simons theory, a topological gauge theory in three dimensions which describes knot and three-manifold invariants, to topological string theory, which is deeply related to Gromov-Witten invariants. This has led to some surprising relations between three-manifold geometry and enumerative geometry. This book gives the first coherent presentation of this and other related topics. After an introduction to matrix models and Chern-Simons theory, the book describes in detail the topological string theories that correspond to these gauge theories and develops the mathematical implications of this duality for the enumerative geometry of Calabi-Yau manifolds and knot theory. It is written in a pedagogical style and will be useful reading for graduate students and researchers in both mathematics and physics willing to learn about these developments.
Linear Algebra
Title | Linear Algebra PDF eBook |
Author | Hassan Yasser |
Publisher | BoD – Books on Demand |
Pages | 265 |
Release | 2012-07-11 |
Genre | Mathematics |
ISBN | 9535106694 |
Linear algebra occupies a central place in modern mathematics. Also, it is a beautiful and mature field of mathematics, and mathematicians have developed highly effective methods for solving its problems. It is a subject well worth studying for its own sake. This book contains selected topics in linear algebra, which represent the recent contributions in the most famous and widely problems. It includes a wide range of theorems and applications in different branches of linear algebra, such as linear systems, matrices, operators, inequalities, etc. It continues to be a definitive resource for researchers, scientists and graduate students.
Einstein Spaces
Title | Einstein Spaces PDF eBook |
Author | A. Z. Petrov |
Publisher | Elsevier |
Pages | 427 |
Release | 2016-08-19 |
Genre | Science |
ISBN | 1483151840 |
Einstein Spaces presents the mathematical basis of the theory of gravitation and discusses the various spaces that form the basis of the theory of relativity. This book examines the contemporary development of the theory of relativity, leading to the study of such problems as gravitational radiation, the interaction of fields, and the behavior of elementary particles in a gravitational field. Organized into nine chapters, this book starts with an overview of the principles of the special theory of relativity, with emphasis on the mathematical aspects. This text then discusses the need for a general classification of all potential gravitational fields, and in particular, Einstein spaces. Other chapters consider the gravitational fields in empty space, such as in a region where the energy-momentum tensor is zero. The final chapter deals with the problem of the limiting conditions in integrating the gravitational field equations. Physicists and mathematicians will find this book useful.
Condensed Matter Field Theory
Title | Condensed Matter Field Theory PDF eBook |
Author | Alexander Altland |
Publisher | Cambridge University Press |
Pages | 785 |
Release | 2010-03-11 |
Genre | Science |
ISBN | 0521769752 |
This primer is aimed at elevating graduate students of condensed matter theory to a level where they can engage in independent research. Topics covered include second quantisation, path and functional field integration, mean-field theory and collective phenomena.
Mirror Symmetry
Title | Mirror Symmetry PDF eBook |
Author | Kentaro Hori |
Publisher | American Mathematical Soc. |
Pages | 954 |
Release | 2003 |
Genre | Mathematics |
ISBN | 0821829556 |
This thorough and detailed exposition is the result of an intensive month-long course on mirror symmetry sponsored by the Clay Mathematics Institute. It develops mirror symmetry from both mathematical and physical perspectives with the aim of furthering interaction between the two fields. The material will be particularly useful for mathematicians and physicists who wish to advance their understanding across both disciplines. Mirror symmetry is a phenomenon arising in string theory in which two very different manifolds give rise to equivalent physics. Such a correspondence has significant mathematical consequences, the most familiar of which involves the enumeration of holomorphic curves inside complex manifolds by solving differential equations obtained from a ``mirror'' geometry. The inclusion of D-brane states in the equivalence has led to further conjectures involving calibrated submanifolds of the mirror pairs and new (conjectural) invariants of complex manifolds: the Gopakumar-Vafa invariants. This book gives a single, cohesive treatment of mirror symmetry. Parts 1 and 2 develop the necessary mathematical and physical background from ``scratch''. The treatment is focused, developing only the material most necessary for the task. In Parts 3 and 4 the physical and mathematical proofs of mirror symmetry are given. From the physics side, this means demonstrating that two different physical theories give isomorphic physics. Each physical theory can be described geometrically, and thus mirror symmetry gives rise to a ``pairing'' of geometries. The proof involves applying $R\leftrightarrow 1/R$ circle duality to the phases of the fields in the gauged linear sigma model. The mathematics proof develops Gromov-Witten theory in the algebraic setting, beginning with the moduli spaces of curves and maps, and uses localization techniques to show that certain hypergeometric functions encode the Gromov-Witten invariants in genus zero, as is predicted by mirror symmetry. Part 5 is devoted to advanced topi This one-of-a-kind book is suitable for graduate students and research mathematicians interested in mathematics and mathematical and theoretical physics.
Applications of Random Matrices in Physics
Title | Applications of Random Matrices in Physics PDF eBook |
Author | Édouard Brezin |
Publisher | Springer Science & Business Media |
Pages | 519 |
Release | 2006-07-03 |
Genre | Science |
ISBN | 140204531X |
Random matrices are widely and successfully used in physics for almost 60-70 years, beginning with the works of Dyson and Wigner. Although it is an old subject, it is constantly developing into new areas of physics and mathematics. It constitutes now a part of the general culture of a theoretical physicist. Mathematical methods inspired by random matrix theory become more powerful, sophisticated and enjoy rapidly growing applications in physics. Recent examples include the calculation of universal correlations in the mesoscopic system, new applications in disordered and quantum chaotic systems, in combinatorial and growth models, as well as the recent breakthrough, due to the matrix models, in two dimensional gravity and string theory and the non-abelian gauge theories. The book consists of the lectures of the leading specialists and covers rather systematically many of these topics. It can be useful to the specialists in various subjects using random matrices, from PhD students to confirmed scientists.
Topological Insulators and Topological Superconductors
Title | Topological Insulators and Topological Superconductors PDF eBook |
Author | B. Andrei Bernevig |
Publisher | Princeton University Press |
Pages | 264 |
Release | 2013-04-07 |
Genre | Science |
ISBN | 1400846730 |
This graduate-level textbook is the first pedagogical synthesis of the field of topological insulators and superconductors, one of the most exciting areas of research in condensed matter physics. Presenting the latest developments, while providing all the calculations necessary for a self-contained and complete description of the discipline, it is ideal for graduate students and researchers preparing to work in this area, and it will be an essential reference both within and outside the classroom. The book begins with simple concepts such as Berry phases, Dirac fermions, Hall conductance and its link to topology, and the Hofstadter problem of lattice electrons in a magnetic field. It moves on to explain topological phases of matter such as Chern insulators, two- and three-dimensional topological insulators, and Majorana p-wave wires. Additionally, the book covers zero modes on vortices in topological superconductors, time-reversal topological superconductors, and topological responses/field theory and topological indices. The book also analyzes recent topics in condensed matter theory and concludes by surveying active subfields of research such as insulators with point-group symmetries and the stability of topological semimetals. Problems at the end of each chapter offer opportunities to test knowledge and engage with frontier research issues. Topological Insulators and Topological Superconductors will provide graduate students and researchers with the physical understanding and mathematical tools needed to embark on research in this rapidly evolving field.